Silicon Carbide, Volume 2: Power Devices and SensorsISBN: 978-3-527-40997-6
Hardcover
520 pages
December 2009
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Silicon Carbide - this easy to manufacture compound of silicon and carbon is said to be THE emerging material for applications in electronics. High thermal conductivity, high electric field breakdown strength and high maximum current density make it most promising for high-powered semiconductor devices. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles.
This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters.
The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.
This volume is devoted to high power devices products and their challenges in industrial application. Readers will benefit from reports on development and reliability aspects of Schottky barrier diodes, advantages of SiC power MOSFETs, or SiC sensors. The authors discuss MEMS and NEMS as SiC-based electronics for automotive industry as well as SiC-based circuit elements for high temperature applications, and the application of transistors in PV-inverters.
The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development. Among the former are CREE Inc. and Fraunhofer ISE, while the industry is represented by Toshiba, Nissan, Infineon, NASA, Naval Research Lab, and Rensselaer Polytechnic Institute, to name but a few.