Dielectric Materials for Electrical EngineeringISBN: 978-1-84821-165-0
Hardcover
640 pages
March 2010, Wiley-ISTE
|
PART 1. GENERAL PHYSICS PHENOMENA 1
Chapter 1. Physics of Dielectrics 3
Guy BLAISE and Daniel TREHEUX
1.1. Definitions 3
1.2. Different types of polarization 4
1.3. Macroscopic aspects of the polarization 8
1.4. Bibliography 16
Chapter 2. Physics of Charged Dielectrics: Mobility and
Charge Trapping 17
Guy BLAISE and Daniel TREHEUX
2.1. Introduction 17
2.2. Localization of a charge in an “ideally perfect” and pure polarizable medium 18
2.3. Localization and trapping of carriers in a real material 26
2.4. Detrapping 33
2.5. Bibliography 35
Chapter 3. Conduction Mechanisms and Numerical Modeling of
Transport in Organic Insulators: Trends and Perspectives
37
Fulbert BAUDOIN, Christian LAURENT, Séverine LE ROY and
Gilbert TEYSSEDRE
3.1. Introduction 37
3.2. Molecular modeling applied to polymers 40
3.3. Macroscopic models 51
3.4. Trends and perspectives 63
3.5. Conclusions 68
3.6. Bibliography 69
Chapter 4. Dielectric Relaxation in Polymeric Materials
79
Eric DANTRAS, Jérôme MENEGOTTO, Philippe DEMONT and
Colette LACABANNE
4.1. Introduction 79
4.2. Dynamics of polarization mechanisms 79
4.3. Orientation polarization in the time domain 81
4.4. Orientation polarization in the frequency domain 83
4.5. Temperature dependence 87
4.6. Relaxation modes of amorphous polymers 92
4.7. Relaxation modes of semi-crystalline polymers 96
4.8. Conclusion 98
4.9. Bibliography 99
Chapter 5. Electrification 101
Gérard TOUCHARD
5.1. Introduction 101
5.2. Electrification of solid bodies by separation/contact 101
5.3. Electrification of solid particles 108
5.4. Conclusion 115
5.5. Bibliography 115
PART 2. PHENOMENA ASSOCIATED WITH ENVIRONMENTAL STRESS – AGEING 117
Chapter 6. Space Charges: Definition, History, Measurement
119
Alain TOUREILLE, Petru NOTINGHER, Jérôme CASTELLON and
Serge AGNEL
6.1. Introduction 119
6.2. History 120
6.3. Space charge measurement methods in solid insulators 123
6.4. Trends and perspectives 129
6.5. Bibliography 130
Chapter 7. Dielectric Materials under Electron Irradiation in
a Scanning Electron Microscope 135
Omar JBARA, Slim FAKHFAKH, Sébastien RONDOT and Dominique
MOUZE
7.1. Introduction 135
7.2. Fundamental aspects of electron irradiation of solids 136
7.3. Physics of insulators 141
7.4. Applications: measurement of the trapped charge or the surface potential 153
7.5. Conclusion 159
7.6. Bibliography 160
Chapter 8. Precursory Phenomena and Dielectric Breakdown of
Solids 165
Christian MAYOUX, Nadine LAHOUD, Laurent BOUDOU and Juan
MARTINEZ-VEGA
8.1. Introduction 165
8.2. Electrical breakdown 166
8.3. Precursory phenomena 168
8.4. Conclusion 179
8.5. Bibliography 180
Chapter 9. Models for Ageing of Electrical Insulation: Trends
and Perspectives 189
Nadine LAHOUD, Laurent BOUDOU, Christian MAYOUX and Juan
MARTINEZ-VEGA
9.1. Introduction 189
9.2. Kinetic approach according to Zhurkov 190
9.3. Thermodynamic approach according to Crine 195
9.4. Microscopic approach according to Dissado–Mazzanti–Montanari 200
9.5. Conclusions and perspectives 206
9.6. Bibliography 207
PART 3. CHARACTERIZATION METHODS AND MEASUREMENT 209
Chapter 10. Response of an Insulating Material to an Electric
Charge: Measurement and Modeling 211
Philippe MOLINIÉ
10.1. Introduction 211
10.2. Standard experiments 212
10.3. Basic electrostatic equations 213
10.4. Dipolar polarization 215
10.5. Intrinsic conduction 218
10.6. Space charge, injection and charge transport 220
10.7. Which model for which material? 226
10.8. Bibliography 227
Chapter 11. Pulsed Electroacoustic Method: Evolution and
Development Perspectives for Space Charge Measurement 229
Virginie GRISERI
11.1. Introduction 229
11.2. Principle of the method 230
11.3. Performance of the method 238
11.4. Diverse measurement systems 239
11.5. Development perspectives and conclusions 246
11.6. Bibliography 246
Chapter 12. FLIMM and FLAMM Methods: Localization of 3-D
Space Charges at the Micrometer Scale 251
Anca PETRE, Didier MARTY-DESSUS, Laurent BERQUEZ and Jean-Luc
FRANCESCHI
12.1. Introduction 251
12.2. The FLIMM method 252
12.3. The FLAMM method 254
12.4. Modeling of the thermal gradient 255
12.5. Mathematical deconvolution 255
12.6. Results 258
12.7. Conclusion 267
12.8. Bibliography 267
Chapter 13. Space Charge Measurement by the Laser-Induced
Pressure Pulse Technique 271
David MALEC
13.1. Introduction 271
13.2. History 272
13.3. Establishment of fundamental equations for the determination of space charge distribution 272
13.4. Experimental setup 276
13.5. Performances and limitations 282
13.6. Examples of use of the method 283
13.7. Use of the LIPP method for surface charge measurement 285
13.8. Perspectives 285
13.9. Bibliography 285
Chapter 14. The Thermal Step Method for Space Charge
Measurements 289
Alain TOUREILLE, Serge AGNEL, Petru NOTINGHER and
Jérôme CASTELLON
14.1. Introduction 289
14.2. Principle of the thermal step method (TSM) 290
14.3. Numerical resolution methods 297
14.4. Experimental set-up 299
14.5. Applications 306
14.6. Conclusion 321
14.7. Bibliography 322
Chapter 15. Physico-Chemical Characterization Techniques of
Dielectrics 325
Christine MAYOUX and Christian MAYOUX
15.1. Introduction 325
15.2. Domains of application 326
15.3. The materials themselves 333
15.4. Conclusion 340
15.5. Bibliography 341
Chapter 16. Insulating Oils for Transformers 347
Abderrahmane BEROUAL, Christophe PERRIER, Jean-Luc
BESSEDE
16.1. Introduction 347
16.2. Generalities 348
16.3. Mineral oils 352
16.4. Synthetic esters or pentaerythritol ester 357
16.5. Silicone oils or PDMS 363
16.6. Halogenated hydrocarbons or PCB 366
16.7. Natural esters or vegetable oils 367
16.8. Security of employment of insulating oils 370
16.9. Conclusion and perspectives 373
16.10. Bibliography 374
Chapter 17. Electrorheological Fluids 379
Jean-Numa FOULC
17.1. Introduction 379
17.2. Electrorheology 381
17.3. Mechanisms and modeling of the electrorheological effect 387
17.4. The conduction model 392
17.5. Giant electrorheological effect 396
17.6. Conclusion 397
17.7. Bibliography 397
Chapter 18. Electrolytic Capacitors 403
Pascal VENET
18.1. Introduction 403
18.2. Generalities 404
18.3. Electrolytic capacitors 410
18.4. Aluminum liquid electrolytic capacitors 411
18.5. (Solid electrolyte) tantalum electrolytic capacitors 414
18.6. Models and characteristics 417
18.7. Failures of electrolytic capacitors 426
18.8. Conclusion and perspectives 431
18.9. Bibliography 432
Chapter 19. Ion Exchange Membranes for Low Temperature Fuel
Cells 435
Vicente COMPAÑ MORENO and Evaristo RIANDE GARCIA
19.1. Introduction 435
19.2. Homogenous cation-exchange membranes 438
19.3. Heterogenous ion exchange membranes 439
19.4. Polymer/acid membranes 441
19.5. Characterization of membranes 442
19.6. Experimental characterization of ion exchange membranes 457
19.7. Determination of membrane morphology using the SEM technique 469
19.8. Thermal stability 470
19.9. Acknowledgements 471
19.10. Bibliography 472
Chapter 20. Semiconducting Organic Materials for
Electroluminescent Devices and Photovoltaic Conversion
477
Pascale JOLINAT and Isabelle SEGUY
20.1. Brief history 477
20.2. Origin of conduction in organic semiconductors 479
20.3. Electrical and optical characteristics of organic semiconductors 480
20.4. Application to electroluminescent devices 482
20.5. Application to photovoltaic conversion 486
20.6. The processing of organic semiconductors 489
20.7. Conclusion 491
20.8. Bibliography 491
Chapter 21. Dielectric Coatings for the Thermal Control of
Geostationary Satellites: Trends and Problems 495
Stéphanie REMAURY
21.1. Introduction 495
21.2. Space environment 496
21.3. The thermal control of space vehicles 501
21.4. Electrostatic phenomena in materials 503
21.5. Conclusion 512
21.6. Bibliography 513
Chapter 22. Recycling of Plastic Materials 515
Pilar MARTINEZ and Eva VERDEJO
22.1. Introduction 515
22.2. Plastic materials 516
22.3. Plastic residues 519
22.4. Bibliography 529
Chapter 23. Piezoelectric Polymers and their Applications
531
Alain BERNES
23.1. Introduction 531
23.2. Piezoelectric polymeric materials 532
23.3. Electro-active properties of piezoelectric polymers 538
23.4. Piezoelectricity applications 549
23.5. Transducers 551
23.6. Conclusion 556
23.7. Bibliography 556
Chapter 24. Polymeric Insulators in the Electrical
Engineering Industry: Examples of Applications, Constraints and
Perspectives 559
Jean-Luc BESSEDE
24.1. Introduction 559
24.2. Equipment 560
24.3. Power transformer insulation 565
24.4. Perspectives 567
24.5. Conclusion 570
24.6. Bibliography 570
List of Authors 573
Index 577