Basic Health Physics: Problems and Solutions, 2nd EditionISBN: 978-3-527-40823-8
Hardcover
768 pages
April 2010
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Preface to the Second Edition xxi
Preface to the First Edition xxiii
Part I Radiation Protection Fundamentals 1
1 Introduction 3
1.1 Questions 3
References 19
Part II Introduction to Radiation Protection 21
2 Dosimetric Quantities and Units 23
2.1 Overview 23
2.2 Basic Concepts 23
2.2.1 Exposure (X) 23
2.2.2 Absorbed Dose (D) 24
2.2.3 Dose Equivalent (H) 25
2.2.4 Committed Dose Equivalent (HT) 25
2.2.5 Effective Dose Equivalent (HE) 25
2.2.6 Kerma 26
2.2.7 Equivalent Dose (HT) 26
2.2.8 Effective Dose (E) 27
2.2.9 Specifi c Energy Imparted 28
2.2.10 Lineal Energy 28
2.3 Radiation Field Quantities 29
2.3.1 Particle Fluence and Fluence Rate 29
2.3.2 Energy Fluence and Energy Fluence Rate 29
2.4 Total Mass Stopping Power 31
2.5 Linear Energy Transfer 32
2.6 Questions 33
References 38
3 Natural and Human-Made Sources of Radiation Exposure 41
3.1 Overview 41
3.2 Natural Sources of Radiation Exposure 41
3.3 Exposure Estimates 42
3.3.1 Cosmic Radiation 42
3.3.2 Cosmogenic Radionuclides 42
3.3.3 Terrestrial Gamma Radiation 42
3.3.4 Inhaled Radionuclides 43
3.3.5 Radionuclides in the Body 43
3.3.6 Total Exposure from Natural Background 43
3.4 Genetically Significant Dose 45
3.5 Human-Made Sources Of Radiation Exposure 45
3.5.1 Occupational Exposures 45
3.6 Example Applications 45
3.6.1 Neutron Sources 46
3.6.2 Oil Well Logging 46
3.6.3 Radiography 46
3.6.4 Radiation Sterilization and Preservation 46
3.6.5 Fallout from Nuclear Weapons Testing 47
3.6.6 Public Radiation Exposure from Medical Diagnosis and Therapy 47
3.7 Comparison of Population Doses for 2006 and the Early 1980s 48
3.8 Questions 50
References 55
4 Standards and Regulations 57
4.1 Objectives of Standards 57
4.2 Occupational Limits 57
4.3 Non Occupational or Public Exposures 58
4.4 Regulations 58
4.4.1 Minors 59
4.4.2 Planned Special Exposures 60
4.4.3 Notifications 61
4.5 Other Requirements 61
4.6 Questions 61
References 67
5 Biological Effects of Ionizing Radiation 69
5.1 Overview 69
5.2 Biological Effects 69
5.2.1 Oxygen Effect 70
5.3 Law of Bergonie and Tribondeau 70
5.4 Degree of Biological Damage 71
5.5 General Radiation Effects and Irradiations in the Individual 71
5.6 Specific Radiation Effects 72
5.6.1 Acute Radiation Exposures 73
5.6.2 Skin Exposures 73
5.7 Delayed Effects 74
5.8 Radiation Risk and Risk Models 76
5.9 ICRP 103 Risk Coefficients 77
5.10 Basic Epidemiology 78
5.11 Dose Response Relationships 78
5.12 Risk Models 79
5.12.1 BEIR VII 79
5.13 Probability of Causation 81
5.13.1 Energy Employees Occupational Illness Compensation Program Act 2
5.14 Questions 83
References 93
6 Instrumentation 97
6.1 Overview 97
6.2 Gas-Filled Detectors 97
6.2.1 Ionization Region 98
6.2.2 Proportional Region 99
6.2.3 Geiger–Mueller Region 100
6.2.4 Photomultiplier Tubes 101
6.3 Scintillation Counters 101
6.4 Semiconductor Detectors 102
6.5 Nuclear Spectroscopy 103
6.6 Alpha Particle Monitoring 104
6.7 Gamma Monitoring 105
6.8 Beta Particle Monitoring 106
6.9 Neutron Monitoring 107
6.10 Instrumentation Summary 108
6.11 Particle Detection Efficiency 108
6.12 Personal Dosimetry Devices 108
6.13 Questions 114
References 122
7 External Dosimetry – Basic Source Geometries and Attenuation Relationships 125
7.1 Source Configurations – No Shielding 125
7.1.1 Point Source Geometry 125
7.1.2 Line Source Geometry 127
7.1.3 Disc Source Geometry 127
7.1.4 Slab Source Geometry 128
7.2 Attenuation by a Shield without Buildup 128
7.3 Attenuation by a Shield with Buildup 129
7.4 Activation Sources 129
7.5 Charged Particle Dose 130
7.6 Beta Dose 132
7.7 Questions 133
References 139
8 Internal Dosimetry 141
8.1 Internal Dose Assessment Models 141
8.2 Internal Dosimetry Definitions 142
8.3 ICRP 2/10 Methodology 142
8.3.1 Single-Uptake, Single-Compartment Model 142
8.3.2 Constant Rate of Uptake, Single-Compartment Model 144
8.3.3 Variation of q f2 after the Cessation of the Uptake 144
8.4 MIRD Theory 145
8.5 Simplified MIRD Equation 146
8.6 Alternate MIRD Equation 148
8.7 MIRD Equation 148
8.8 ICRP 26/30 Dose Methodology 150
8.8.1 Metabolic Models 151
8.8.2 Lung Model 151
8.8.3 Ingestion Model 153
8.8.4 Calculation of Doses 155
8.9 ICRP 60/66 Methodology 155
8.9.1 Detriment 156
8.9.2 Terminology 157
8.10 ICRP 103/66/100 Methodology 160
8.10.1 Radiation Effects, Tissue Weighting Factors, and Radiation Weighting Factors 160
8.10.2 Sex-Averaging 161
8.10.3 Assessment of Occupational Dose 162
8.11 Human Respiratory Tract Model (HRTM) 162
8.11.1 Absorption 163
8.11.2 Particle Sizes 164
8.11.3 Additional Model Details 164
8.12 Human Alimentary Tract Model (HATM) 165
8.12.1 Absorption to Blood 167
8.12.2 Dose Calculations 169
8.13 Questions 169
References 177
9 ALARA and Shielding 181
9.1 Introduction 181
9.2 ALARA Principles 181
9.2.1 Time 181
9.2.2 Distance 182
9.2.3 Shielding 183
9.2.3.1 Photon Shielding 183
9.2.3.2 X-ray Shielding 184
9.2.3.3 Beta Particle Shielding 185
9.2.3.4 Bremsstrahlung 185
9.2.3.5 Shield Design and Beta-Ray Properties 186
9.2.3.6 Neutron Shielding 187
9.3 Elements of ALARA 187
9.3.1 Job Planning 188
9.3.2 Job Execution 189
9.3.3 Review of Job Completion 189
9.4 Accident Conditions 189
9.5 ALARA Examples 190
9.6 ALARA in Advanced Technologies 191
9.6.1 Fusion Reactors 191
9.6.2 Muon Colliders 192
9.7 Questions 194
References 199
10 Counting Statistics 201
10.1 Overview 201
10.2 Distributions 201
10.3 Mean and Standard Deviation 202
10.4 Errors and Confidence Interval 203
10.5 Statistical Error 204
10.6 Error Introduced by the Background 205
10.7 Optimum Distribution of Counting Time between Sample and Background 206
10.8 Terminology 207
10.8.1 Critical Level 207
10.8.2 Lower Limit of Detection (LLD) 208
10.8.3 Minimum Detectable Activity (MDA) 208
10.9 Type Errors 209
10.10 Statistical Tests and Data Characteristics 210
10.10.1 Propagation of Errors 211
10.10.2 Comparison of Data Sets Using the Student’s t-Test 212
10.10.3 Distribution of a Series of Counts – Chi-Square Statistic 213
10.10.4 Rejection of Data 215
10.11 Questions 216
References 222
Part III Applications 225
11 Monitoring and Interpretation 227
11.1 Overview 227
11.2 External Dose Measurements 227
11.3 Bioassay 228
11.4 Air Sampling 231
11.5 Release of a Radioactive Gas into a Ventilated Room 232
11.6 Compliance 233
11.7 Questions 234
References 241
12 Operational Health Physics 243
12.1 Overview 243
12.2 Radiological Controls 243
12.2.1 Radioiodine 243
12.2.2 Noble Gases 244
12.2.3 Particulates 244
12.2.4 Tritium 245
12.3 Radiation Surveys 245
12.4 Respiratory Protection 246
12.5 Safety Precedence Sequence for Radiation Hazards 248
12.6 Questions 250
References 255
13 Transportation and Waste 257
13.1 Radioactive Waste Overview 257
13.2 Radioactive Waste 257
13.3 Natural Waste Materials 258
13.3.1 Mine Tailings 258
13.3.2 Depleted Uranium 258
13.3.3 NORM 258
13.4 Human-Made Radioactive Waste Materials 259
13.4.1 Fission and Activation Products 259
13.4.2 Source Material and Special Nuclear Material 259
13.4.3 Transuranic Waste 260
13.5 Byproduct Material 260
13.6 Transportation 261
13.7 Definitions 261
13.7.1 Radioactive Material 261
13.7.2 Packaging 264
13.7.3 Vehicles 264
13.7.4 Transport Index 265
13.7.5 Criticality Safety Index 265
13.8 Package Radiation Surveys and Limits 266
13.9 Package Requirements 268
13.9.1 Limited Quantities 268
13.9.2 LSA and SCO Packages 269
13.9.3 LSA and SCO Shipping Requirements 270
13.9.4 Type A 271
13.9.5 Type B 272
13.9.6 Fissile Material 272
13.10 Transport Vehicle Surveys 273
13.11 Placarding and Shipping Papers 273
13.11.1 Placarding 273
13.11.2 Shipping Papers 273
13.12 Questions 274
References 283
14 Nuclear Emergencies 285
14.1 Introduction 285
14.2 Regulatory Guidance 285
14.2.1 Emergency Doses for Radiation Workers 285
14.3 ICRP Emergency Dose Recommendations 287
14.4 Accident Classification 288
14.5 Protective Action Guidelines 289
14.6 Internal Uptakes 290
14.7 Examples of Nuclear Emergencies 291
14.7.1 Three Mile Island 291
14.7.2 Accident Sequence 291
14.7.3 Radioactivity Released to the Environment 291
14.7.4 Summary of Radiation Doses 292
14.7.5 Chernobyl 292
14.8 Intentional Dispersal of Radioactive Materials 294
14.9 Questions 296
References 302
Part IV Specialty Health Physics Areas 305
15 Medical Health Physics 307
15.1 Overview 307
15.2 Diagnostic X-rays and Biological Effects 307
15.2.1 X-ray Production 307
15.3 Radiography 308
15.4 Fluoroscopy 309
15.5 Mammography 309
15.6 Diagnostic Nuclear Medicine 311
15.6.1 Computed Tomography 312
15.6.2 Tracer Studies and Radioisotope Administration 313
15.7 Therapeutic Nuclear Medicine 313
15.7.1 Radionuclide Administration 313
15.8 Medical Accelerator Physics and External Beam Therapy 316
15.9 Brachytherapy 318
15.10 Facility Design 318
15.11 NCRP 49 318
15.11.1 Shielding Design 319
15.11.2 X-ray Shielding 320
15.11.3 Primary Barrier 320
15.11.4 Secondary Barrier 321
15.11.5 Leakage Radiation 321
15.12 NCRP 147 322
15.12.1 Unshielded Air Kerma 323
15.12.2 Shielding Calculations 324
15.13 NCRP 151 325
15.13.1 Primary Barrier 325
15.13.2 Secondary Barriers 326
15.13.3 Scattering 326
15.13.4 Leakage 327
15.14 Management of Radionuclide Therapy Patients 327
15.15 Questions 328
References 335
16 University Health Physics 339
16.1 Overview 339
16.2 Research Utilizing Radionuclides 339
16.2.1 H-3 339
16.2.2 C-14 340
16.2.3 P-32 340
16.2.4 Co-60 340
16.2.5 I-125/I-131 341
16.2.6 Cf-252 341
16.3 Engineering Considerations 342
16.3.1 Engineering Controls 342
16.4 Sample Counting 343
16.5 Other Research Activities 344
16.5.1 Agricultural/Environmental Research 346
16.5.2 Research Reactors 346
16.5.3 Particle Accelerators 347
16.5.4 Materials Research via X-ray Diffraction Techniques 347
16.5.5 Fusion Energy Research 348
16.6 Overview of an Initial Fusion Power Facility 349
16.6.1 General Radiological Characteristics 349
16.7 Questions 350
References 357
17 Fuel Cycle Health Physics 361
17.1 Overview 361
17.2 Common Isotopes 361
17.3 Radiation in Pre-irradiation Fuel Cycle Facilities 361
17.4 Nuclear Fuel Cycle 362
17.4.1 Uranium Fuel Cycle 362
17.4.2 Uranium Ore and Chemical Processing 362
17.4.3 Enrichment 362
17.4.4 Gaseous Diffusion 363
17.4.5 Gas Centrifuge 363
17.4.6 AVLIS 363
17.4.7 Nuclear Fuel 364
17.4.8 Nuclear Fuel Reprocessing 364
17.4.9 Thorium Fuel Cycle 365
17.4.10 Open and Closed Fuel Cycles 365
17.5 Radioactive Waste 367
17.6 Criticality 368
17.6.1 Critical Mass 369
17.6.2 Geometry or Shape 370
17.6.3 Enrichment of the Fissile Isotope 370
17.6.4 Moderation and Reflection 370
17.6.5 Neutron Absorbers or Poison Material 370
17.7 Questions 371
References 379
18 Research Reactor Health Physics 383
18.1 Introduction 383
18.2 Radionuclides of Concern 383
18.3 Reactor Types 384
18.3.1 TRIGA® 384
18.3.2 Pool 385
18.3.3 Tank-in-Pool 385
18.3.4 Argonaut Reactors 386
18.3.5 Slowpoke 386
18.4 Research Reactors Operational Characteristics 386
18.5 Reactor Systems and Associated Radionuclide Production 388
18.5.1 Fuel 388
18.5.2 Coolant and Moderator Water 388
18.5.3 Reflectors 388
18.6 Dose Control 389
18.6.1 Biological Shielding 389
18.6.2 H-3 Control 389
18.6.3 N-16 Control 389
18.6.4 Ar-41 Control 390
18.7 Reactor Effluents 390
18.7.1 Gaseous Effluents 391
18.7.2 Liquid Effluents 391
18.8 Questions 391
References 397
19 Power Reactor Health Physics 399
19.1 Overview 399
19.2 Generation I, II, III, and IV Reactors 399
19.3 Power Reactors 401
19.4 Common Power Reactor Radionuclides 401
19.5 Pressurized Water Reactors 402
19.5.1 Core 402
19.5.2 Reactor Vessel 403
19.5.3 Primary Coolant System 403
19.5.4 Steam System 403
19.5.5 Control and Protection Systems 404
19.5.6 Engineered Safety Features 404
19.6 Boiling Water Reactors 405
19.6.1 BWR Reactor Assembly 405
19.6.2 BWR Reactor Core 405
19.7 Candu Reactors 405
19.7.1 General Description 406
19.7.2 Control Systems 406
19.7.3 Steam System 406
19.7.4 Safety Systems 407
19.8 High-Temperature Gas-Cooled Reactors 407
19.9 Liquid Metal Fast Breeder Reactors 407
19.9.1 Fuel Reprocessing 408
19.10 Health Physics Hazards 408
19.10.1 Buildup of Filter or Demineralizer Activity 408
19.10.2 Activation of Reactor Components 409
19.10.3 Cladding Failures 410
19.10.4 Reactor Coolant System (RCS) Leakage 411
19.10.5 Hot Particle Dose 411
19.10.6 NCRP 130 Hot Particle Recommendations 412
19.10.7 Effluents 413
19.11 Radiological Considerations During Reactor Accidents 414
19.11.1 Semi-Infinite Cloud Model 415
19.12 Questions 416
References 426
20 Environmental Health Physics 429
20.1 Overview 429
20.2 Major Radionuclides 429
20.3 Naturally Occurring Radioactive Material 430
20.4 Radon 430
20.4.1 Radon Entry and Mitigation 431
20.4.2 Radon Kinetics 431
20.4.3 Radon Units, Exposure, and Dose 432
20.5 Uranium Miner Lung Data 432
20.6 Radon Risk Assessments 433
20.7 Assessing Radon Exposures 433
20.8 Buildup of Radon Inleakage 435
20.9 Environmental Monitoring Programs 435
20.9.1 Preoperational Monitoring 435
20.9.2 Operational Monitoring 436
20.9.3 Instrumentation 436
20.10 Environmental Releases 437
20.10.1 Accumulation of Activity in Ponds and Surfaces 438
20.11 Dispersion of Radioactive Gas from a Continuous Source 439
20.12 Dispersion of Radioactive Particulates from a Continuous Source 441
20.13 Specific Applications of the Dispersion Equations 442
20.14 Pathways Associated with Open and Closed Fuel Cycles 443
20.14.1 Open Fuel Cycles 443
20.14.2 Closed Fuel Cycles 444
20.15 Regulatory Guidance For Effluent Pathways 444
20.16 ICRP 103 Recommendations for the Protection of the Environment 445
20.17 Questions 446
References 452
21 Accelerator Health Physics 457
21.1 Overview 457
21.2 Basic Physics 458
21.3 Accelerator Facility Overview 459
21.3.1 Target/Beam Stop Geometry 459
21.3.2 Target Room 459
21.3.3 Beam Transport 459
21.3.4 Accelerator Complex 460
21.4 Major Isotopes Produced 460
21.5 Accelerator Types 460
21.6 Proton Accelerators 461
21.6.1 Low-Energy Proton Accelerators 461
21.6.2 Van de Graaff Accelerators 461
21.6.3 Cyclotrons 462
21.6.4 High-Energy Proton Accelerators 463
21.6.4.1 Antiprotons 464
21.6.4.2 Proton Reactions 464
21.6.4.3 Neutrons 464
21.6.4.4 Muons 465
21.6.4.5 Hadronic (Nuclear) Cascade 465
21.7 Electron Accelerators 466
21.7.1 Bremsstrahlung 467
21.7.2 Synchrotron Radiation 468
21.7.3 Electromagnetic Cascade 468
21.7.4 Electron Linac 469
21.7.5 Betatrons 470
21.7.6 High-Energy Electron Accelerators 471
21.8 Light Sources 471
21.9 Heavy Ion Accelerators 472
21.10 Muon Colliders 472
21.10.1 Bounding Neutrino Effective Dose – Linear Muon Collider 472
21.10.2 Bounding Neutrino Effective Dose – Circular Muon Collider 473
21.11 Radiation Types of Concern 474
21.12 Residual Radioactivity 474
21.12.1 Activation of Water 475
21.12.2 Activation of the Soil 475
21.12.3 Activation of Air 475
21.13 Shielding 476
21.14 Dose Equivalent From The Accelerator Target 476
21.15 Beam Current 477
21.16 Pulsed Radiation Fields 477
21.17 Questions 478
References 485
22 Non-ionizing Radiation 489
22.1 Overview 489
22.2 Radiofrequency and Microwave Radiation 489
22.2.1 Characteristics of Electromagnetic Waves 491
22.2.2 Antennas 491
22.2.2.1 Stationary Antennas 492
22.2.2.2 Rotating Antennas 495
22.2.3 Attenuation by Biological Systems 495
22.3 Biological Effects 496
22.4 Protection Standards 496
22.5 Laser Radiation 499
22.5.1 Radiometric and Photometric Terms and Units 500
22.5.2 Principles and Properties of the Laser 500
22.5.3 Biological Effects from Laser Radiation 503
22.5.3.1 Eye 503
22.5.3.2 Skin 504
22.6 Laser Regulations and Standards 505
22.6.1 Intrabeam Exposures 506
22.6.2 Nominal Ocular Hazard Distance (NOHD) 507
22.6.3 Diffuse Reflections 509
22.6.4 Nominal Hazard Zone 510
22.6.5 Skin Exposures 510
22.7 Free Electron Lasers 511
22.8 Federal Regulations 511
22.9 Laser Safety Calculations 512
22.9.1 Limiting Aperture 512
22.9.2 Exposure Time/Maximum Permissible Exposure 512
22.10 Controlling Laser Radiation 514
22.11 Personnel Protective Equipment 515
22.12 Spectral Effectiveness of Ultraviolet Radiation 515
22.13 Questions 516
References 525
Part V Answers and Solutions 529
Answers and Solutions 531
Part VI Appendixes 679
Appendix I Mathematical Review 681
Appendix II Physical Constants 689
Appendix III Particle Properties 691
Appendix IV Supplementary Information for Gamma-Ray Dose Calculations 693
Appendix V Selected Data on Radionuclides and Decay Relationships 700
Appendix VI Electromagnetic and Mechanics Relationships 705
Appendix VII Conversion Factors 710
Appendix VIII Physical Quantities and Their Units 714
Appendix IX Production Equations In Health Physics 718
Subject Index 725