Wiley.com
Print this page Share

Basic Health Physics: Problems and Solutions, 2nd Edition

ISBN: 978-3-527-40823-8
Hardcover
768 pages
April 2010
List Price: US $185.95
Government Price: US $125.40
Enter Quantity:   Buy
Basic Health Physics: Problems and Solutions, 2nd Edition (3527408231) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.

Preface to the Second Edition xxi

Preface to the First Edition xxiii

Part I Radiation Protection Fundamentals 1

1 Introduction 3

1.1 Questions 3

References 19

Part II Introduction to Radiation Protection 21

2 Dosimetric Quantities and Units 23

2.1 Overview 23

2.2 Basic Concepts 23

2.2.1 Exposure (X) 23

2.2.2 Absorbed Dose (D) 24

2.2.3 Dose Equivalent (H) 25

2.2.4 Committed Dose Equivalent (HT) 25

2.2.5 Effective Dose Equivalent (HE) 25

2.2.6 Kerma 26

2.2.7 Equivalent Dose (HT) 26

2.2.8 Effective Dose (E) 27

2.2.9 Specifi c Energy Imparted 28

2.2.10 Lineal Energy 28

2.3 Radiation Field Quantities 29

2.3.1 Particle Fluence and Fluence Rate 29

2.3.2 Energy Fluence and Energy Fluence Rate 29

2.4 Total Mass Stopping Power 31

2.5 Linear Energy Transfer 32

2.6 Questions 33

References 38

3 Natural and Human-Made Sources of Radiation Exposure 41

3.1 Overview 41

3.2 Natural Sources of Radiation Exposure 41

3.3 Exposure Estimates 42

3.3.1 Cosmic Radiation 42

3.3.2 Cosmogenic Radionuclides 42

3.3.3 Terrestrial Gamma Radiation 42

3.3.4 Inhaled Radionuclides 43

3.3.5 Radionuclides in the Body 43

3.3.6 Total Exposure from Natural Background 43

3.4 Genetically Significant Dose 45

3.5 Human-Made Sources Of Radiation Exposure 45

3.5.1 Occupational Exposures 45

3.6 Example Applications 45

3.6.1 Neutron Sources 46

3.6.2 Oil Well Logging 46

3.6.3 Radiography 46

3.6.4 Radiation Sterilization and Preservation 46

3.6.5 Fallout from Nuclear Weapons Testing 47

3.6.6 Public Radiation Exposure from Medical Diagnosis and Therapy 47

3.7 Comparison of Population Doses for 2006 and the Early 1980s 48

3.8 Questions 50

References 55

4 Standards and Regulations 57

4.1 Objectives of Standards 57

4.2 Occupational Limits 57

4.3 Non Occupational or Public Exposures 58

4.4 Regulations 58

4.4.1 Minors 59

4.4.2 Planned Special Exposures 60

4.4.3 Notifications 61

4.5 Other Requirements 61

4.6 Questions 61

References 67

5 Biological Effects of Ionizing Radiation 69

5.1 Overview 69

5.2 Biological Effects 69

5.2.1 Oxygen Effect 70

5.3 Law of Bergonie and Tribondeau 70

5.4 Degree of Biological Damage 71

5.5 General Radiation Effects and Irradiations in the Individual 71

5.6 Specific Radiation Effects 72

5.6.1 Acute Radiation Exposures 73

5.6.2 Skin Exposures 73

5.7 Delayed Effects 74

5.8 Radiation Risk and Risk Models 76

5.9 ICRP 103 Risk Coefficients 77

5.10 Basic Epidemiology 78

5.11 Dose Response Relationships 78

5.12 Risk Models 79

5.12.1 BEIR VII 79

5.13 Probability of Causation 81

5.13.1 Energy Employees Occupational Illness Compensation Program Act 2

5.14 Questions 83

References 93

6 Instrumentation 97

6.1 Overview 97

6.2 Gas-Filled Detectors 97

6.2.1 Ionization Region 98

6.2.2 Proportional Region 99

6.2.3 Geiger–Mueller Region 100

6.2.4 Photomultiplier Tubes 101

6.3 Scintillation Counters 101

6.4 Semiconductor Detectors 102

6.5 Nuclear Spectroscopy 103

6.6 Alpha Particle Monitoring 104

6.7 Gamma Monitoring 105

6.8 Beta Particle Monitoring 106

6.9 Neutron Monitoring 107

6.10 Instrumentation Summary 108

6.11 Particle Detection Efficiency 108

6.12 Personal Dosimetry Devices 108

6.13 Questions 114

References 122

7 External Dosimetry – Basic Source Geometries and Attenuation Relationships 125

7.1 Source Configurations – No Shielding 125

7.1.1 Point Source Geometry 125

7.1.2 Line Source Geometry 127

7.1.3 Disc Source Geometry 127

7.1.4 Slab Source Geometry 128

7.2 Attenuation by a Shield without Buildup 128

7.3 Attenuation by a Shield with Buildup 129

7.4 Activation Sources 129

7.5 Charged Particle Dose 130

7.6 Beta Dose 132

7.7 Questions 133

References 139

8 Internal Dosimetry 141

8.1 Internal Dose Assessment Models 141

8.2 Internal Dosimetry Definitions 142

8.3 ICRP 2/10 Methodology 142

8.3.1 Single-Uptake, Single-Compartment Model 142

8.3.2 Constant Rate of Uptake, Single-Compartment Model 144

8.3.3 Variation of q f2 after the Cessation of the Uptake 144

8.4 MIRD Theory 145

8.5 Simplified MIRD Equation 146

8.6 Alternate MIRD Equation 148

8.7 MIRD Equation 148

8.8 ICRP 26/30 Dose Methodology 150

8.8.1 Metabolic Models 151

8.8.2 Lung Model 151

8.8.3 Ingestion Model 153

8.8.4 Calculation of Doses 155

8.9 ICRP 60/66 Methodology 155

8.9.1 Detriment 156

8.9.2 Terminology 157

8.10 ICRP 103/66/100 Methodology 160

8.10.1 Radiation Effects, Tissue Weighting Factors, and Radiation Weighting Factors 160

8.10.2 Sex-Averaging 161

8.10.3 Assessment of Occupational Dose 162

8.11 Human Respiratory Tract Model (HRTM) 162

8.11.1 Absorption 163

8.11.2 Particle Sizes 164

8.11.3 Additional Model Details 164

8.12 Human Alimentary Tract Model (HATM) 165

8.12.1 Absorption to Blood 167

8.12.2 Dose Calculations 169

8.13 Questions 169

References 177

9 ALARA and Shielding 181

9.1 Introduction 181

9.2 ALARA Principles 181

9.2.1 Time 181

9.2.2 Distance 182

9.2.3 Shielding 183

9.2.3.1 Photon Shielding 183

9.2.3.2 X-ray Shielding 184

9.2.3.3 Beta Particle Shielding 185

9.2.3.4 Bremsstrahlung 185

9.2.3.5 Shield Design and Beta-Ray Properties 186

9.2.3.6 Neutron Shielding 187

9.3 Elements of ALARA 187

9.3.1 Job Planning 188

9.3.2 Job Execution 189

9.3.3 Review of Job Completion 189

9.4 Accident Conditions 189

9.5 ALARA Examples 190

9.6 ALARA in Advanced Technologies 191

9.6.1 Fusion Reactors 191

9.6.2 Muon Colliders 192

9.7 Questions 194

References 199

10 Counting Statistics 201

10.1 Overview 201

10.2 Distributions 201

10.3 Mean and Standard Deviation 202

10.4 Errors and Confidence Interval 203

10.5 Statistical Error 204

10.6 Error Introduced by the Background 205

10.7 Optimum Distribution of Counting Time between Sample and Background 206

10.8 Terminology 207

10.8.1 Critical Level 207

10.8.2 Lower Limit of Detection (LLD) 208

10.8.3 Minimum Detectable Activity (MDA) 208

10.9 Type Errors 209

10.10 Statistical Tests and Data Characteristics 210

10.10.1 Propagation of Errors 211

10.10.2 Comparison of Data Sets Using the Student’s t-Test 212

10.10.3 Distribution of a Series of Counts – Chi-Square Statistic 213

10.10.4 Rejection of Data 215

10.11 Questions 216

References 222

Part III Applications 225

11 Monitoring and Interpretation 227

11.1 Overview 227

11.2 External Dose Measurements 227

11.3 Bioassay 228

11.4 Air Sampling 231

11.5 Release of a Radioactive Gas into a Ventilated Room 232

11.6 Compliance 233

11.7 Questions 234

References 241

12 Operational Health Physics 243

12.1 Overview 243

12.2 Radiological Controls 243

12.2.1 Radioiodine 243

12.2.2 Noble Gases 244

12.2.3 Particulates 244

12.2.4 Tritium 245

12.3 Radiation Surveys 245

12.4 Respiratory Protection 246

12.5 Safety Precedence Sequence for Radiation Hazards 248

12.6 Questions 250

References 255

13 Transportation and Waste 257

13.1 Radioactive Waste Overview 257

13.2 Radioactive Waste 257

13.3 Natural Waste Materials 258

13.3.1 Mine Tailings 258

13.3.2 Depleted Uranium 258

13.3.3 NORM 258

13.4 Human-Made Radioactive Waste Materials 259

13.4.1 Fission and Activation Products 259

13.4.2 Source Material and Special Nuclear Material 259

13.4.3 Transuranic Waste 260

13.5 Byproduct Material 260

13.6 Transportation 261

13.7 Definitions 261

13.7.1 Radioactive Material 261

13.7.2 Packaging 264

13.7.3 Vehicles 264

13.7.4 Transport Index 265

13.7.5 Criticality Safety Index 265

13.8 Package Radiation Surveys and Limits 266

13.9 Package Requirements 268

13.9.1 Limited Quantities 268

13.9.2 LSA and SCO Packages 269

13.9.3 LSA and SCO Shipping Requirements 270

13.9.4 Type A 271

13.9.5 Type B 272

13.9.6 Fissile Material 272

13.10 Transport Vehicle Surveys 273

13.11 Placarding and Shipping Papers 273

13.11.1 Placarding 273

13.11.2 Shipping Papers 273

13.12 Questions 274

References 283

14 Nuclear Emergencies 285

14.1 Introduction 285

14.2 Regulatory Guidance 285

14.2.1 Emergency Doses for Radiation Workers 285

14.3 ICRP Emergency Dose Recommendations 287

14.4 Accident Classification 288

14.5 Protective Action Guidelines 289

14.6 Internal Uptakes 290

14.7 Examples of Nuclear Emergencies 291

14.7.1 Three Mile Island 291

14.7.2 Accident Sequence 291

14.7.3 Radioactivity Released to the Environment 291

14.7.4 Summary of Radiation Doses 292

14.7.5 Chernobyl 292

14.8 Intentional Dispersal of Radioactive Materials 294

14.9 Questions 296

References 302

Part IV Specialty Health Physics Areas 305

15 Medical Health Physics 307

15.1 Overview 307

15.2 Diagnostic X-rays and Biological Effects 307

15.2.1 X-ray Production 307

15.3 Radiography 308

15.4 Fluoroscopy 309

15.5 Mammography 309

15.6 Diagnostic Nuclear Medicine 311

15.6.1 Computed Tomography 312

15.6.2 Tracer Studies and Radioisotope Administration 313

15.7 Therapeutic Nuclear Medicine 313

15.7.1 Radionuclide Administration 313

15.8 Medical Accelerator Physics and External Beam Therapy 316

15.9 Brachytherapy 318

15.10 Facility Design 318

15.11 NCRP 49 318

15.11.1 Shielding Design 319

15.11.2 X-ray Shielding 320

15.11.3 Primary Barrier 320

15.11.4 Secondary Barrier 321

15.11.5 Leakage Radiation 321

15.12 NCRP 147 322

15.12.1 Unshielded Air Kerma 323

15.12.2 Shielding Calculations 324

15.13 NCRP 151 325

15.13.1 Primary Barrier 325

15.13.2 Secondary Barriers 326

15.13.3 Scattering 326

15.13.4 Leakage 327

15.14 Management of Radionuclide Therapy Patients 327

15.15 Questions 328

References 335

16 University Health Physics 339

16.1 Overview 339

16.2 Research Utilizing Radionuclides 339

16.2.1 H-3 339

16.2.2 C-14 340

16.2.3 P-32 340

16.2.4 Co-60 340

16.2.5 I-125/I-131 341

16.2.6 Cf-252 341

16.3 Engineering Considerations 342

16.3.1 Engineering Controls 342

16.4 Sample Counting 343

16.5 Other Research Activities 344

16.5.1 Agricultural/Environmental Research 346

16.5.2 Research Reactors 346

16.5.3 Particle Accelerators 347

16.5.4 Materials Research via X-ray Diffraction Techniques 347

16.5.5 Fusion Energy Research 348

16.6 Overview of an Initial Fusion Power Facility 349

16.6.1 General Radiological Characteristics 349

16.7 Questions 350

References 357

17 Fuel Cycle Health Physics 361

17.1 Overview 361

17.2 Common Isotopes 361

17.3 Radiation in Pre-irradiation Fuel Cycle Facilities 361

17.4 Nuclear Fuel Cycle 362

17.4.1 Uranium Fuel Cycle 362

17.4.2 Uranium Ore and Chemical Processing 362

17.4.3 Enrichment 362

17.4.4 Gaseous Diffusion 363

17.4.5 Gas Centrifuge 363

17.4.6 AVLIS 363

17.4.7 Nuclear Fuel 364

17.4.8 Nuclear Fuel Reprocessing 364

17.4.9 Thorium Fuel Cycle 365

17.4.10 Open and Closed Fuel Cycles 365

17.5 Radioactive Waste 367

17.6 Criticality 368

17.6.1 Critical Mass 369

17.6.2 Geometry or Shape 370

17.6.3 Enrichment of the Fissile Isotope 370

17.6.4 Moderation and Reflection 370

17.6.5 Neutron Absorbers or Poison Material 370

17.7 Questions 371

References 379

18 Research Reactor Health Physics 383

18.1 Introduction 383

18.2 Radionuclides of Concern 383

18.3 Reactor Types 384

18.3.1 TRIGA® 384

18.3.2 Pool 385

18.3.3 Tank-in-Pool 385

18.3.4 Argonaut Reactors 386

18.3.5 Slowpoke 386

18.4 Research Reactors Operational Characteristics 386

18.5 Reactor Systems and Associated Radionuclide Production 388

18.5.1 Fuel 388

18.5.2 Coolant and Moderator Water 388

18.5.3 Reflectors 388

18.6 Dose Control 389

18.6.1 Biological Shielding 389

18.6.2 H-3 Control 389

18.6.3 N-16 Control 389

18.6.4 Ar-41 Control 390

18.7 Reactor Effluents 390

18.7.1 Gaseous Effluents 391

18.7.2 Liquid Effluents 391

18.8 Questions 391

References 397

19 Power Reactor Health Physics 399

19.1 Overview 399

19.2 Generation I, II, III, and IV Reactors 399

19.3 Power Reactors 401

19.4 Common Power Reactor Radionuclides 401

19.5 Pressurized Water Reactors 402

19.5.1 Core 402

19.5.2 Reactor Vessel 403

19.5.3 Primary Coolant System 403

19.5.4 Steam System 403

19.5.5 Control and Protection Systems 404

19.5.6 Engineered Safety Features 404

19.6 Boiling Water Reactors 405

19.6.1 BWR Reactor Assembly 405

19.6.2 BWR Reactor Core 405

19.7 Candu Reactors 405

19.7.1 General Description 406

19.7.2 Control Systems 406

19.7.3 Steam System 406

19.7.4 Safety Systems 407

19.8 High-Temperature Gas-Cooled Reactors 407

19.9 Liquid Metal Fast Breeder Reactors 407

19.9.1 Fuel Reprocessing 408

19.10 Health Physics Hazards 408

19.10.1 Buildup of Filter or Demineralizer Activity 408

19.10.2 Activation of Reactor Components 409

19.10.3 Cladding Failures 410

19.10.4 Reactor Coolant System (RCS) Leakage 411

19.10.5 Hot Particle Dose 411

19.10.6 NCRP 130 Hot Particle Recommendations 412

19.10.7 Effluents 413

19.11 Radiological Considerations During Reactor Accidents 414

19.11.1 Semi-Infinite Cloud Model 415

19.12 Questions 416

References 426

20 Environmental Health Physics 429

20.1 Overview 429

20.2 Major Radionuclides 429

20.3 Naturally Occurring Radioactive Material 430

20.4 Radon 430

20.4.1 Radon Entry and Mitigation 431

20.4.2 Radon Kinetics 431

20.4.3 Radon Units, Exposure, and Dose 432

20.5 Uranium Miner Lung Data 432

20.6 Radon Risk Assessments 433

20.7 Assessing Radon Exposures 433

20.8 Buildup of Radon Inleakage 435

20.9 Environmental Monitoring Programs 435

20.9.1 Preoperational Monitoring 435

20.9.2 Operational Monitoring 436

20.9.3 Instrumentation 436

20.10 Environmental Releases 437

20.10.1 Accumulation of Activity in Ponds and Surfaces 438

20.11 Dispersion of Radioactive Gas from a Continuous Source 439

20.12 Dispersion of Radioactive Particulates from a Continuous Source 441

20.13 Specific Applications of the Dispersion Equations 442

20.14 Pathways Associated with Open and Closed Fuel Cycles 443

20.14.1 Open Fuel Cycles 443

20.14.2 Closed Fuel Cycles 444

20.15 Regulatory Guidance For Effluent Pathways 444

20.16 ICRP 103 Recommendations for the Protection of the Environment 445

20.17 Questions 446

References 452

21 Accelerator Health Physics 457

21.1 Overview 457

21.2 Basic Physics 458

21.3 Accelerator Facility Overview 459

21.3.1 Target/Beam Stop Geometry 459

21.3.2 Target Room 459

21.3.3 Beam Transport 459

21.3.4 Accelerator Complex 460

21.4 Major Isotopes Produced 460

21.5 Accelerator Types 460

21.6 Proton Accelerators 461

21.6.1 Low-Energy Proton Accelerators 461

21.6.2 Van de Graaff Accelerators 461

21.6.3 Cyclotrons 462

21.6.4 High-Energy Proton Accelerators 463

21.6.4.1 Antiprotons 464

21.6.4.2 Proton Reactions 464

21.6.4.3 Neutrons 464

21.6.4.4 Muons 465

21.6.4.5 Hadronic (Nuclear) Cascade 465

21.7 Electron Accelerators 466

21.7.1 Bremsstrahlung 467

21.7.2 Synchrotron Radiation 468

21.7.3 Electromagnetic Cascade 468

21.7.4 Electron Linac 469

21.7.5 Betatrons 470

21.7.6 High-Energy Electron Accelerators 471

21.8 Light Sources 471

21.9 Heavy Ion Accelerators 472

21.10 Muon Colliders 472

21.10.1 Bounding Neutrino Effective Dose – Linear Muon Collider 472

21.10.2 Bounding Neutrino Effective Dose – Circular Muon Collider 473

21.11 Radiation Types of Concern 474

21.12 Residual Radioactivity 474

21.12.1 Activation of Water 475

21.12.2 Activation of the Soil 475

21.12.3 Activation of Air 475

21.13 Shielding 476

21.14 Dose Equivalent From The Accelerator Target 476

21.15 Beam Current 477

21.16 Pulsed Radiation Fields 477

21.17 Questions 478

References 485

22 Non-ionizing Radiation 489

22.1 Overview 489

22.2 Radiofrequency and Microwave Radiation 489

22.2.1 Characteristics of Electromagnetic Waves 491

22.2.2 Antennas 491

22.2.2.1 Stationary Antennas 492

22.2.2.2 Rotating Antennas 495

22.2.3 Attenuation by Biological Systems 495

22.3 Biological Effects 496

22.4 Protection Standards 496

22.5 Laser Radiation 499

22.5.1 Radiometric and Photometric Terms and Units 500

22.5.2 Principles and Properties of the Laser 500

22.5.3 Biological Effects from Laser Radiation 503

22.5.3.1 Eye 503

22.5.3.2 Skin 504

22.6 Laser Regulations and Standards 505

22.6.1 Intrabeam Exposures 506

22.6.2 Nominal Ocular Hazard Distance (NOHD) 507

22.6.3 Diffuse Reflections 509

22.6.4 Nominal Hazard Zone 510

22.6.5 Skin Exposures 510

22.7 Free Electron Lasers 511

22.8 Federal Regulations 511

22.9 Laser Safety Calculations 512

22.9.1 Limiting Aperture 512

22.9.2 Exposure Time/Maximum Permissible Exposure 512

22.10 Controlling Laser Radiation 514

22.11 Personnel Protective Equipment 515

22.12 Spectral Effectiveness of Ultraviolet Radiation 515

22.13 Questions 516

References 525

Part V Answers and Solutions 529

Answers and Solutions 531

Part VI Appendixes 679

Appendix I Mathematical Review 681

Appendix II Physical Constants 689

Appendix III Particle Properties 691

Appendix IV Supplementary Information for Gamma-Ray Dose Calculations 693

Appendix V Selected Data on Radionuclides and Decay Relationships 700

Appendix VI Electromagnetic and Mechanics Relationships 705

Appendix VII Conversion Factors 710

Appendix VIII Physical Quantities and Their Units 714

Appendix IX Production Equations In Health Physics 718

Subject Index 725

Back to Top