Phase-Field Methods in Materials Science and EngineeringISBN: 978-3-527-40747-7
Hardcover
312 pages
December 2010
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
PART I: Phase Transformation in Materials Science
1. Introduction to Phase transformations and microstructure formation in materials science
2. An example: Solidification of pure materials
3. Phase Transformations and Phenomenology of Landau
4. Phase field model for solidification in pure materials
5. Phase Transformations in binary alloys
6. Phase-field models of phase transformations in binary alloys
7. Applications to microstructure growth in binary alloys
8. Connection between phase-field and sharp-interface parameters
PART II: Elastic and Plastic Effects in Phase Transformations
1. Review of Mechanics of Materials
2. Overview of Modeling and Simulation Techniques in Mechanics
3. Phase-field Models
4. Applications: Effects of Elastic Stress on Thin Film Growth and Phase Transformations
PART III: Modeling Atomic Scale Systems using the Phase-Field Method
1. Phase field Modeling of Periodic Systems
2. Modeling Crystals with Phase Fields
3. Applications
PART IV: Numerical Solution Methods for simulating Phase-Field Models
1. Introduction to Numerical Methods for PDEs -
Space Discretization
2. Iterative Methods for sparse Linear Systems
3. Numerical Methods for PDEs -
Time Marching Schemes
4. Discretization of the Diffusion Equation
5. Discretization of Advection Diffusion Equations
6. Introduction to the Message Passing Interface (MPI)
7. Solved MPI Examples
1. Introduction to Phase transformations and microstructure formation in materials science
2. An example: Solidification of pure materials
3. Phase Transformations and Phenomenology of Landau
4. Phase field model for solidification in pure materials
5. Phase Transformations in binary alloys
6. Phase-field models of phase transformations in binary alloys
7. Applications to microstructure growth in binary alloys
8. Connection between phase-field and sharp-interface parameters
PART II: Elastic and Plastic Effects in Phase Transformations
1. Review of Mechanics of Materials
2. Overview of Modeling and Simulation Techniques in Mechanics
3. Phase-field Models
4. Applications: Effects of Elastic Stress on Thin Film Growth and Phase Transformations
PART III: Modeling Atomic Scale Systems using the Phase-Field Method
1. Phase field Modeling of Periodic Systems
2. Modeling Crystals with Phase Fields
3. Applications
PART IV: Numerical Solution Methods for simulating Phase-Field Models
1. Introduction to Numerical Methods for PDEs -
Space Discretization
2. Iterative Methods for sparse Linear Systems
3. Numerical Methods for PDEs -
Time Marching Schemes
4. Discretization of the Diffusion Equation
5. Discretization of Advection Diffusion Equations
6. Introduction to the Message Passing Interface (MPI)
7. Solved MPI Examples