Wiley.com
Print this page Share

The Basics of Theoretical and Computational Chemistry

ISBN: 978-3-527-31773-8
Hardcover
195 pages
March 2007
List Price: US $104.95
Government Price: US $59.48
Enter Quantity:   Buy
The Basics of Theoretical and Computational Chemistry (3527317732) cover image

INTRODUCTION
Theory and Models -
Interpretation of Experimental Data
Notations
Vector Space and Function Space
Dual Space and Hilbert Space
The Probability Function
Operators
BASIC CONCEPTS OF VECTOR SPACE THEORY OF MATTER
The Wave Equation as Probability Function
Postulates of Quantum Mechanics
The Schrodinger Equation
Hermicity
Exact Measurability and Eigenvalue Problems
Eigenvalue Problems of Hermitian Operator
The Eigenvalue Equation of the Hamiltonian
Eigenvalue Spectrum
CONCEQUENCES OF QUANTUM MECHANICS
Geometrical Interpretation of Eigenvalue Equations in Vector Space
Commutators and Uncertainty Relations
Virtual Particles and Forces in Nature
CHEMISTRY AND QUANTUM MECHANICS
Eigenvalue Problem of Angular Momentum and 'Orbital' Concept
Molecular Orbital and Valence Bond Models
Spin -
Antisymmetry Principle
Virial Theorem
Chemical Bond
APPROXIMATION FOR MANY-ELECTRON SYSTEMS
Non-relativistic Stationary Systems
Adiabatic /
Born-Oppenheimer Approximation
Independent Particle Approximation
Spin Orbitals and Slater Determinants
Atomic and Molecular Orbitals: The LCAO-MO Approach
Quantitative Molecular Orbital Calculations
Canonical and Localised Orbitals and Chemical Model Concepts
PERTURBATION THEORY IN QUANTUM CHEMISTRY
Projections and Projectors
Principles of Perturbation Theory
Rayleigh-Schrodinger Perturbation Theory
Application Examples
GROUP THEORY IN THEORETICAL CHEMISTRY
Definition of a Group
Symmetry Groups
Application Examples in Quantum Chemistry
Applications in Spectroscopy
METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY
ab initio Methods
Semiempirical MO Methods
Density Functional Methods
FORCE FIELD METHODS AND MOLECULAR MODELLING
Empirical Force Fields
Molecular Modelling Programs
Docking
QSAR -
Quantitative Activity -
Structure Relationships
STATISTICAL SIMULATIONS: MONTE CARLO AND MOLECULAR DYNAMICS METHODS
Common Features
Monte Carlo Simulations
Molecular Dynamics Simulations
Evaluation and Visualisation of Simulation Results
Quantum Mechanical Simulations

Back to Top