Semi-Supervised and Unsupervised Machine Learning: Novel StrategiesISBN: 978-1-84821-203-9
Hardcover
320 pages
January 2011, Wiley-ISTE
|
PART 1. STATE OF THE ART 1
Chapter 1. Introduction 3
1.1. Organization of the book 6
1.2. Utterance corpus 8
1.3. Datasets from the UCI repository10
1.4. Microarray dataset 13
1.5. Simulated datasets 14
Chapter 2. State of the Art in Clustering and Semi-Supervised Techniques 15
2.1. Introduction 15
2.2. Unsupervised machine learning (clustering) 15
2.3. A brief history of cluster analysis 16
2.4. Cluster algorithms 19
2.5. Applications of cluster analysis 52
2.6. Evaluation methods 77
2.7. Internal cluster evaluation 77
2.8. External cluster validation 80
2.9. Semi-supervised learning 84
2.10. Summary 88
PART 2. APPROACHES TO SEMI-SUPERVISED CLASSIFICATION 91
Chapter 3. Semi-Supervised Classification Using Prior Word Clustering 93
3.1. Introduction 93
3.2. Dataset 94
3.3. Utterance classification scheme 94
3.4. Semi-supervised approach based on term clustering 98
3.5. Disambiguation 113
3.6. Summary 124
Chapter 4. Semi-Supervised Classification Using Pattern Clustering 127
4.1. Introduction 127
4.2. New semi-supervised algorithm using the cluster and label strategy 128
4.3. Optimum cluster labeling 132
4.4. Supervised classification block 154
4.5. Datasets 159
4.6. An analysis of the bounds for the cluster and label approaches 162
4.7. Extension through cluster pruning 164
4.8. Simulations and results 173
4.9. Summary 179
PART 3 . CONTRIBUTIONS TO UNSUPERVISED CLASSIFICATION – ALGORITHMS TO DETECT THE OPTIMAL NUMBER OF CLUSTERS 183
Chapter 5. Detection of the Number of Clusters through Non-Parametric Clustering Algorithms 185
5.1. Introduction 185
5.2. New hierarchical pole-based clustering algorithm 186
5.3. Evaluation 190
5.4. Datasets 192
5.5. Summary 197
Chapter 6. Detecting the Number of Clusters through Cluster Validation 199
6.1. Introduction 199
6.2. Cluster validation methods 201
6.3. Combination approach based on quantiles 206
6.4. Datasets 212
6.5. Results 214
6.6. Application of speech utterances 223
6.7. Summary 224
Bibliography 227
Index 243