Inverse Problems in Vision and 3D TomographyISBN: 978-1-84821-172-8
Hardcover
467 pages
January 2010, Wiley-ISTE
|
Preface 13
Chapter 1. Introduction to Inverse Problems in Imaging and
Vision 15
Ali MOHAMMAD-DJAFARI
1.1. Inverse problems 16
1.2. Specific vision problems 21
1.3. Models for time-dependent quantities 26
1.4. Inverse problems with multiple inputs and multiple outputs (MIMO) 27
1.5. Non-linear inverse problems 30
1.6. 3D reconstructions 33
1.7. Inverse problems with multimodal observations 33
1.8. Classification of inversion methods: analytical or algebraic 34
1.9. Standard deterministic methods 40
1.10. Probabilistic methods 44
1.11. Problems specific to vision 50
1.12. Introduction to the various chapters of the book 52
1.13. Bibliography 55
Chapter 2. Noise Removal and Contour Detection 59
Pierre CHARBONNIER and Christophe COLLET
2.1. Introduction 61
2.2. Statistical segmentation of noisy images 72
2.3. Multi-band multi-scale Markovian regularization 79
2.4. Bibliography 88
Chapter 3. Blind Image Deconvolution 97
Laure BLANC-FÉRAUD, Laurent MUGNIER and André
JALOBEANU
3.1. Introduction 97
3.2. The blind deconvolution problem 98
3.3. Joint estimation of the PSF and the object 103
3.4. Marginalized estimation of the impulse response 107
3.5. Various other approaches 112
3.6. Multi-image methods and phase diversity 114
3.7. Conclusion 115
3.8. Bibliography 116
Chapter 4. Triplet Markov Chains and Image Segmentation
123
Wojciech PIECZYNSKI
4.1. Introduction 124
4.2. Pairwise Markov chains (PMCs) 127
4.3. Copulas in PMCs 130
4.4. Parameter estimation 132
4.5. Triplet Markov chains (TMCs) 136
4.6. TMCs and non-stationarity 139
4.7. Hidden Semi-Markov chains (HSMCs) and TMCs 140
4.8. Auxiliary multivariate chains 144
4.9. Conclusions and outlook 148
4.10. Bibliography 149
Chapter 5. Detection and Recognition of a Collection of
Objects in a Scene 155
Xavier DESCOMBES, Ian JERMYN and Josiane ZERUBIA
5.1. Introduction 155
5.2. Stochastic approaches 156
5.3. Variational approaches 167
5.4. Bibliography 184
Chapter 6. Apparent Motion Estimation and Visual Tracking
191
Etienne MÉMIN and Patrick PÉREZ
6.1. Introduction: from motion estimation to visual tracking 191
6.2. Instantaneous estimation of apparent motion 193
6.3. Visual tracking 219
6.4. Conclusions 240
6.5. Bibliography 241
Chapter 7. Super-resolution 251
Ali MOHAMMAD-DJAFARI and Fabrice HUMBLOT
7.1. Introduction 251
7.2. Modeling the direct problem 252
7.3. Classical SR methods 257
7.4. SR inversion methods 261
7.5. Methods based on a Bayesian approach 265
7.6. Simulation results 271
7.7. Conclusion 272
7.8. Bibliography 274
Chapter 8. Surface Reconstruction from Tomography Data
277
Charles SOUSSEN and Ali MOHAMMAD-DJAFARI
8.1. Introduction 277
8.2. Reconstruction of localized objects 280
8.3. Use of deformable contours for 3D reconstruction 284
8.4. Appropriate surface models and algorithmic considerations 293
8.5. Reconstruction of a polyhedric active contour 298
8.6. Conclusion 303
8.7. Bibliography 305
Chapter 9. Gauss-Markov-Potts Prior for Bayesian Inversion in
Microwave Imaging 309
Olivier FÉRON, Bernard DUCHÊNE and Ali
MOHAMMAD-DJAFARI
9.1. Introduction 310
9.2. Experimental configuration and modeling of the direct problem 311
9.3. Inversion in the linear case 315
9.4. Inversion in the non-linear case 325
9.5. Conclusion 335
9.6. Bibliography 336
Chapter 10. Shape from Shading 339
Jean-Denis DUROU
10.1. Introduction 339
10.2. Modeling of shape from shading 340
10.3. Resolution of shape from shading 353
10.4. Conclusion 371
10.5. Bibliography 372
Chapter 11. Image Separation 377
Hichem SNOUSSI and Ali MOHAMMAD-DJAFARI
11.1. General introduction 377
11.2. Blind image separation 378
11.3. Bayesian formulation 384
11.4. Stochastic algorithms 390
11.5. Simulation results 398
11.6. Conclusion 401
11.7. Appendix 1: a posteriori distributions 407
11.8. Bibliography 409
Chapter 12. Stereo Reconstruction in Satellite and Aerial
Imaging 411
Julie DELON and Andrés ALMANSA
12.1. Introduction 411
12.2. Principles of satellite stereovision 412
12.3. Matching 415
12.4. Regularization 421
12.5. Numerical considerations 425
12.6. Conclusion 432
12.7. Bibliography 434
Chapter 13. Fusion and Multi-modality 437
Christophe COLLET, Farid FLITTI, Stéphanie BRICQ and
André JALOBEANU
13.1. Fusion of optical multi-detector images without loss of information 437
13.2. Fusion of multi-spectral images using hidden Markov trees 438
13.3. Segmentation of multimodal cerebral MRI using an a priori probabilistic map 448
13.4. Bibliography 458
List of Authors 461
Index 463