Power Electronics Semiconductor DevicesISBN: 978-1-84821-064-6
Hardcover
576 pages
April 2009, Wiley-ISTE
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Preface xi
Chapter 1. Power MOSFET Transistors 1
Pierre ALOÏSI
1.1. Introduction 1
1.2. Power MOSFET technologies 5
1.2.1. Diffusion process 5
1.2.2. Physical and structural MOS parameters 7
1.2.3. Permanent sustaining current 20
1.3. Mechanism of power MOSFET operation 23
1.3.1. Basic principle 23
1.3.2. Electron injection 23
1.3.3. Static operation 25
1.3.4. Dynamic operation 30
1.4. Power MOSFET main characteristics 34
1.5. Switching cycle with an inductive load 36
1.5.1. Switch-on study 36
1.5.2. Switch-off study 38
1.6. Characteristic variations due to MOSFET temperature changes 44
1.7. Over-constrained operations 46
1.7.1. Overvoltage on the gate 46
1.7.2. Over-current 47
1.7.3. Avalanche sustaining 49
1.7.4. Use of the body diode 50
1.7.5. Safe operating areas 51
1.8. Future developments of the power MOSFET 53
1.9. References 55
Chapter 2. Insulated Gate Bipolar Transistors 57
Pierre ALOÏSI
2.1. Introduction 57
2.2. IGBT technology 58
2.2.1. IGBT structure 58
2.2.2. Voltage and current characteristics 60
2.3. Operation technique 63
2.3.1. Basic principle 63
2.3.2. Continuous operation 64
2.3.3. Dynamic operation 71
2.4. Main IGBT characteristics 74
2.5 One cycle of hard switching on the inductive load 75
2.5.1. Switch-on study 76
2.5.2. Switch-off study 78
2.6 Soft switching study 86
2.6.1. Soft switching switch-on: ZVS (Zero Voltage Switching) 86
2.6.2. Soft switching switch-off: ZCS (Zero Current Switching) 88
2.7. Temperature operation 94
2.8. Over-constraint operations 98
2.8.1. Overvoltage 98
2.8.2. Over-current 99
2.8.3. Manufacturer’s specified safe operating areas 113
2.9. Future of IGBT 116
2.9.1. Silicon evolution 116
2.9.2. Saturation voltage improvements 117
2.10. IGBT and MOSFET drives and protections 119
2.10.1. Gate drive design 119
2.10.2. Gate drive circuits 122
2.10.3. MOSFET and IGBT protections 128
2.11. References 130
Chapter 3. Series and Parallel Connections of MOS and IGBT 133
Daniel CHATROUX , Dominique LAFORE and Jean-Luc SCHANEN
3.1. Introduction 133
3.2. Kinds of associations 134
3.2.1. Increase of power 134
3.2.2. Increasing performance 135
3.3. The study of associations: operation and parameter influence on imbalances in series and parallel 135
3.3.1. Analysis and characteristics for the study of associations 135
3.3.2. Static operation 137
3.3.3. Dynamic operation: commutation 140
3.3.4. Transient operation 149
3.3.5. Technological parameters that influence imbalances 151
3.4. Solutions for design 152
3.4.1. Parallel association 152
3.4.2. Series associations 161
3.4.3. Matrix connection of components 179
3.5. References 182
Chapter 4. Silicon Carbide Applications in Power Electronics 185
Marie-Laure LOCATELLI and Dominique PLANSON
4.1. Introduction 185
4.2. Physical properties of silicon carbide 186
4.2.1. Structural features 186
4.2.2. Chemical, mechanical and thermal features 189
4.2.3. Electronic and thermal features 188
4.2.4. Other “candidates” as semiconductors of power 195
4.3. State of the art technology for silicon carbide power components 296
4.3.1. Substrates and thin layers of SiC 296
4.3.2. Technological steps for achieving power components 203
4.4. Applications of silicon carbide in power electronics 216
4.4.1. SiC components for high frequency power supplies 216
4.4.2. SiC components for switching systems under high voltage and high power 233
4.4.3. High energy SiC components for series protection systems 249
4.5. Conclusion 252
4.6. Acknowledgments 255
4.7. References 255
Chapter 5. Capacitors for Power Electronics 267
Abderrahmane BÉROUAL, Sophie GUILLEMET-FRITSCH and Thierry LEBEY
5.1. Introduction 267
5.2. The various components of the capacitor – description 268
5.2.1. The dielectric material 269
5.2.2. The armatures 269
5.2.3. Technology of capacitors 270
5.2.4. Connections 271
5.3. Stresses in a capacitor 272
5.3.1. Stresses related to the voltage magnitude 272
5.3.2. Losses and drift of capacity 273
5.3.3. Thermal stresses 274
5.3.4. Electromechanical stresses 275
5.3.5. Electromagnetic constraints 276
5.4. Film capacitors 276
5.4.1. Armatures 276
5.4.2. Dielectric materials 279
5.5. Impregnated capacitors 279
5.6. Electrolytic capacitors 280
5.7. Modeling and use of capacitors 282
5.7.1. Limitations of capacitors 283
5.7.2. Application of capacitors 290
5.8. Ceramic capacitors 293
5.8.1. Definitions 294
5.8.2. Methods of producing ceramics 296
5.8.3. Technologies of ceramic capacitors 299
5.8.4. The different types of components 302
5.8.5. Summary – conclusion 310
5.9. Specific applications of ceramic capacitors in power electronics 311
5.9.1. Snubber circuits 311
5.9.2. In ZVS 312
5.9.3. Series resonant converters 313
5.10. R&D perspectives on capacitors for power electronics 313
5.10.1. Film capacitors 313
5.10.2. Electrolytic capacitors 314
5.10.3. Ceramic capacitors 314
5.11. References 315
Chapter 6. Modeling Connections 317
Edith CLAVEL, François COSTA, Arnaud GUENA, Cyrille GAUTIER, James ROUDET and Jean-Luc SCHANEN
6.1. Introduction 317
6.1.1. Importance of interconnections in power electronics 317
6.1.2. The constraints imposed on the interconnections 318
6.1.3. The various interconnections used in power electronics 319
6.1.4. The need to model the interconnections 320
6.2. The method of modeling 321
6.2.1. The required qualities 321
6.2.2. Which method of modeling? 322
6.2.3. Brief description of the PEEC method 324
6.3. The printed circuit board 329
6.3.1. Introduction 330
6.3.2. Thin wire method 330
6.3.3. Expressions of per unit length parameters 332
6.3.4. Representation by multi-poles, “circuit” modeling 340
6.3.5. Topological analysis of printed circuit 346
6.3.6. Experimental applications 349
6.3.7. Conclusion on the simulation of printed circuit 353
6.4. Towards a better understanding of massive interconnections 353
6.4.1. General considerations 353
6.4.2 The printed circuit board or the isolated metal substrate (IMS) 359
6.4.3. Massive conductors 361
6.4.4. Bus bars 361
6.5. Experimental validations 362
6.6. Using these models 366
6.6.1. Determination of equivalent impedance 366
6.6.2. Other applications: towards thermal analysis and electrodynamic efforts computation 390
6.7. Conclusion 399
6.8. References 400
Chapter 7. Commutation Cell 403
James ROUDET and Jean-Luc SCHANEN
7.1. Introduction: a well-defined commutation cell 403
7.2. Some more or less coupled physical phenomena 404
7.3. The players in switching (respective roles of the component and its environment) 410
7.3.1. Closure of the MOSFET 411
7.3.2. Opening of the MOSFET 424
7.3.3. Summary 431
7.4. References 432
Chapter 8. Power Electronics and Thermal Management 433
Corinne PERRET and Robert PERRET
8.1. Introduction: the need for efficient cooling of electronic modules 433
8.2. Current power components 436
8.2.1. Silicon chip: the active component 436
8.2.2. Distribution of losses in the silicon chip 442
8.3. Power electronic modules 442
8.3.1. Main features of the power electronic modules 442
8.3.2. The main heat equations in the module 444
8.3.3. Cooling currently used for components of power electronics 446
8.3.4. Towards an “all silicon” approach 448
8.3.5. Conclusion 451
8.4. Laws of thermal and fluid exchange for forced convection with single phase operation 452
8.4.1. Notion of thermal resistance 452
8.4.2. Laws of convective exchanges from a thermal and hydraulic point of view: the four numbers of fluids physics 456
8.5. Modeling heat exchanges 461
8.5.1. Semi-analytical approach 461
8.5.2. The numerical models 472
8.5.3. Taking into account electro-thermal coupling 478
8.6. Experimental validation and results 486
8.6.1. Infrared thermography 486
8.6.2. Indirect measurement of temperature from a thermo-sensible parameter 490
8.7. Conclusion 493
8.8. References 494
Chapter 9. Towards Integrated Power Electronics 497
Patrick AUSTIN, Marie BREIL and Jean-Louis SANCHEZ
9.1. The integration 497
9.1.1. Introduction 497
9.1.2. The different types of monolithic integration 499
9.2. Examples and development of functional integration 507
9.2.1. The MOS thyristor structures 507
9.2.2. Evolution towards the integration of specific functions 514
9.3. Integration of functions within the power component 520
9.3.1. Monolithic integration of electrical functions 520
9.3.2. Extensions of integration 530
9.4. Design method and technologies 535
9.4.1 Evolution of methods and design tools for functional integration 535
9.4.2. The technologies 537
9.5. Conclusion 541
9.6. References 542
List of Authors 547
Index 551