Wiley.com
Print this page Share

Colloid Science: Principles, Methods and Applications, 2nd Edition

ISBN: 978-1-4443-2020-6
Paperback
394 pages
April 2010, Wiley-Blackwell
List Price: US $79.00
Government Price: US $45.40
Enter Quantity:   Buy
Colloid Science: Principles, Methods and Applications, 2nd Edition (1444320203) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
Other Available Formats: Hardcover

Preface.

Introduction.

Acknowledgements.

List of Contributors.

1 An Introduction to Colloids (Roy Hughes).

1.1 Introduction.

1.2 Basic Definitions.

1.3 Stability.

1.4 Colloid Frontiers.

2 Charge in Colloidal Systems (David Fermin and Jason Riley).

2.1 Introduction.

2.2 The Origin of Surface Charge.

2.3 The Electrochemical Double Layer.

2.4 Electrokinetic Properties.

3 Stability of Charge-stabilised Colloids (John Eastman).

3.1 Introduction.

3.2 The Colloidal Pair Potential.

3.3 Criteria for Stability.

3.4 Kinetics of Coagulation.

3.5 Conclusions.

4 Surfactant Aggregation and Adsorption at Interfaces (Julian Eastoe).

4.1 Introduction.

4.2 Characteristic Features of Surfactants.

4.3 Classification and Applications of Surfactants.

4.4 Adsorption of Surfactants at Interfaces.

4.5 Surfactant Solubility.

4.6 Micellisation.

4.7 Liquid Crystalline Mesophases.

4.8 Advanced Surfactants.

5 Microemulsions (Julian Eastoe).

5.1 Introduction.

5.2 Microemulsions: Definition and History.

5.3 Theory of Formation and Stability.

5.4 Physicochemical Properties.

5.5 Developments and Applications.

6 Emulsions (Brian Vincent).

6.1 Introduction.

6.2 Preparation.

6.3 Stability.

7 Polymers and Polymer Solutions (Terence Cosgrove).

7.1 Introduction.

7.2 Polymerisation.

7.3 Copolymers.

7.4 Polymer Physical Properties.

7.5 Polymer Uses.

7.6 Theoretical Models of Polymer Structure.

7.7 Measuring Polymer Molecular Weight.

7.8 Flory-Huggins Theory.

8 Polymers at Interfaces (Terence Cosgrove).

8.1 Introduction.

8.2 Adsorption of Polymers.

8.3 Models and Simulations for Terminally Attached Chains.

8.4 Experimental Aspects.

8.5 Copolymers.

8.6 Polymer Brushes.

8.7 Conclusions.

9 Effect of Polymers on Colloid Stability (Jeroen van Duijneveldt).

9.1 Introduction.

9.2 Particle Interaction Potential.

9.3 Steric Stabilisation.

9.4 Depletion Interactions.

9.5 Bridging Interactions.

9.6 Conclusion.

10 Wetting of Surfaces (Paul Reynolds).

10.1 Introduction.

10.2 Surfaces and Definitions.

10.3 Surface Tension.

10.4 Surface Energy.

10.5 Contact Angles.

10.6 Wetting.

10.7 Liquid Spreading and Spreading Coefficients.

10.8 Cohesion and Adhesion.

10.9 Two Liquids on a Surface.

10.10 Detergency.

10.11 Spreading of a Liquid on a Liquid.

10.12 Characterisation of a Solid Surface.

10.13 Polar and Dispersive Components.

10.14 Polar Materials.

10.15 Wettability Envelopes.

10.16 Measurement Methods.

10.17 Conclusions.

11 Aerosols (Nana-Owusua A. Kwamena and Jonathan P. Reid).

11.1 Introduction.

11.2 Generating and Sampling Aerosols.

11.3 Determining the Particle Concentration and Size.

11.4 Determining Particle Composition.

11.5 The Equilibrium State of Aerosols.

11.6 The Kinetics of Aerosol Transformation.

11.7 Concluding Remarks.

12 Practical Rheology (Roy Hughes).

12.1 Introduction.

12.2 Making Measurements.

12.3 Rheometry and Viscoelasticity.

12.4 Examples of Soft Materials.

12.5 Summary.

13 Scattering and Reflection Techniques (Robert Richardson).

13.1 Introduction.

13.2 The Principle of a Scattering Experiment.

13.3 Radiation for Scattering Experiments.

13.4 Light Scattering.

13.5 Dynamic Light Scattering.

13.6 Small Angle Scattering.

13.7 Sources of Radiation.

13.8 Small Angle Scattering Apparatus.

13.9 Scattering and Absorption by Atoms.

13.10 Scattering Length Density.

13.11 Small Angle Scattering from a Dispersion.

13.12 Form Factor for Spherical Particles.

13.13 Determining Particle Size from SANS and SAXS.

13.14 Guinier Plots to Determine Radius of Gyration.

13.15 Determination of Particle Shape.

13.16 Polydispersity.

13.17 Determination of Particle Size Distribution.

13.18 Alignment of Anisotropic Particles.

13.19 Concentrated Dispersions.

13.20 Contrast Variation Using SANS.

13.21 High Q Limit: Porod Law.

13.22 Introduction to X-Ray and Neutron Reflection.

13.23 Reflection Experiment.

13.24 A Simple Example of a Reflection Measurement.

13.25 Conclusion.

14 Optical Manipulation (Paul Bartlett).

14.1 Introduction.

14.2 Manipulating Matter with Light.

14.3 Force Generation in Optical Tweezers.

14.4 Nanofabrication.

14.5 Single Particle Dynamics.

14.6 Conclusions.

15 Electron Microscopy (Sean Davis).

15.1 General Features of (Electron) Optical Imaging Systems.

15.2 Conventional TEM.

15.3 Conventional SEM.

15.4 Summary.

16 Surface Forces (Wuge Briscoe).

16.1 Introduction.

16.2 Forces and Energy; Size and Shape.

16.3 Surface Force Measurement Techniques.

16.4 Different Types of Surface Forces.

16.5 Recent Examples of Surface Force Measurement.

16.6 Future Challenges.

References.

Index.

Related Titles

Surface & Colloid Chemistry

by Bernard Cambou (Editor), Michel Jean (Editor), Farhang Radjaï (Editor)
by Richard C. Alkire (Editor), Dieter M. Kolb (Editor), Jacek Lipkowski (Editor), Phil N. Ross (Editor)
Back to Top