Textbook
Philosophy of Mathematics: An IntroductionISBN: 978-1-4051-8991-0
Paperback
344 pages
February 2009, ©2009, Wiley-Blackwell
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Part I: Plato versus Aristotle:.
A. Plato.
1. The Socratic Background.
2. The Theory of Recollection.
3. Platonism in Mathematics.
4. Retractions: the Divided Line in Republic VI (509d−511e).
B. Aristotle.
5. The Overall Position.
6. Idealizations.
7. Complications.
8. Problems with Infinity.
C. Prospects.
Part II: From Aristotle to Kant:.
1. Medieval Times.
2. Descartes.
3. Locke, Berkeley, Hume.
4. A Remark on Conceptualism.
5. Kant: the Problem.
6. Kant: the Solution.
Part III: Reactions to Kant:.
1. Mill on Geometry.
2. Mill versus Frege on Arithmetic.
3. Analytic Truths.
4. Concluding Remarks.
Part IV: Mathematics and its Foundations:.
1. Geometry.
2. Different Kinds of Number.
3. The Calculus.
4. Return to Foundations.
5. Infinite Numbers.
6. Foundations Again.
Part V: Logicism:.
1. Frege.
2. Russell.
3. Borkowski/Bostock.
4. Set Theory.
5. Logic.
6. Definition.
Part VI: Formalism:.
1. Hilbert.
2. Gödel.
3. Pure Formalism.
4. Structuralism.
5. Some Comments.
Part VII: Intuitionism:.
1. Brouwer.
2. Intuitionist Logic.
3. The Irrelevance of Ontology.
4. The Attack on Classical Logic.
Part VIII: Predicativism:.
1. Russell and the VCP.
2. Russell’s Ramified Theory and the Axiom of Reducibility.
3. Predicative Theories after Russell.
4. Concluding Remarks.
Part IX: Realism versus Nominalism:.
A. Realism.
1. Gödel.
2. Neo-Fregeans.
3. Quine and Putnam.
B. Nominalism.
4. Reductive Nominalism.
5. Fictionalism.
6. Concluding Remarks.
References.
Index