Mechanical Science, 3rd EditionISBN: 978-1-4051-3794-2
Paperback
512 pages
February 2006, Wiley-Blackwell
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Chapter 1 Forces and equilibrium; 1.1 Scalars and vectors; 1.2 Force as a vector; 1.3 Non-concurrent forces; 1.4 Free-body diagrams; 1.5 Forces in equilibrium; Problems; Chapter 2 Simple stress and strain; 2.1 Stress and strain; 2.2 Thermal stresses; 2.3 Composite bars; 2.4 Poisson’s ratio; 2.5 Bulk modulus; Problems; Chapter 3 Beams; 3.1 Types of beams; 3.2 Bending moment and shearing force; 3.3 Bending stresses; 3.4 Second moment of area; 3.5 Section modulus; 3.6 Combined bending and direct stresses; 3.7 Shear stresses due to bending; 3.8 Composite beams; 3.9 Plastic bending; Problems; Chapter 4 Deflections of beams; 4.1 The deflection curve; 4.2 Deflections by double-integration; 4.3 Moment–area method; 4.4 Macaulay’s method; 4.5 Statically-indeterminate beams; Problems; Chapter 5 Struts and columns; 5.1 Buckling; 5.2 Euler’s equation; 5.3 Limitations of Euler’s equation; Problems; Chapter 6 Torsion; 6.1 Torsion of circular shafts; 6.2 Transmission of power; 6.3 Compound shafts; Problems; Chapter 7 Strain energy; 7.1 Strain energy; 7.2 Strain energy in axially loaded bars; 7.3 Dynamic loading; 7.4 Strain energy due to shear; 7.5 Impact torsional loading; 7.6 Strain energy due to bending; 7.7 Impact loading of beams; 7.8 Strain energy due to combined loading; 7.9 Castigliano’s theorem; Problems; Chapter 8 Stress and strain analysis; 8.1 Complex stress situations; 8.2 Simple tension; 8.3 Biaxial stress system; 8.4 General two-dimensional stress system; 8.5 Mohr’s stress circle; 8.6 Principal strains and stresses; 8.7 Plane strain; 8.8 Theories of failure; 8.9 Elastic constants; Problems; Chapter 9 Cylindrical shells; 9.1 Thin cylindrical shell; 9.2 Thin spherical shell; 9.3 Volume changes of shells; 9.4 Thick cylindrical shell; 9.5 Compound tube; Problems; Chapter 10 Linear and angular motion; 10.1 Linear motion; 10.2 Curvilinear motion; 10.3 Relative velocity; 10.4 Angular motion; 10.5 Torque and angular motion; 10.6 Balancing of rotating masses; 10.7 Momentum; 10.8 Work and energy; Problems; Chapter 11 Mechanisms; 11.1 Mechanisms; 11.2 Velocity diagrams; 11.3 Acceleration diagrams; 11.4 Reciprocating mechanisms;Problems; Chapter 12 Turning moment diagrams; 12.1 Crank effort diagrams; 12.2 Fluctuations of speed and energy; 12.3 Flywheels; Problems; Chapter 13 Power transmission; 13.1 Machines and some basic definitions; 13.2 Transmission of rotational motion; 13.3 Geared systems; 13.4 Gear trains; 13.5 Epicyclic gear trains; 13.6 Torques on gear trains; Problems; Chapter 14 Friction clutches, bearings and belt drives; 14.1 Friction; 14.2 Friction clutches; 14.3 Bearings; 14.4 Belt drives; Problems; Chapter 15 Gyroscopic motion; 15.1 Vectors; 15.2 Gyroscopic couple; Problems; Chapter 16 Free vibration; 16.1 Simple harmonic motion; 16.2 Linear vibrations of an elastic system; 16.3 Torsional vibrations of an elastic system; 16.4 Transverse vibrations of beams; 16.5 Whirling of shafts; Problems; Chapter 17 Damped and forced oscillations; 17.1 Free oscillations; 17.2 Damped oscillations; 17.3 Undamped forced oscillations; 17.4 Damped forced oscillations; Problems; Chapter 18 Vibrations of multi-degree systems; 18.1 Degrees of freedom; 18.2 Coupled pendulums; 18.3 Two rotor system; 18.4 Forced vibrations; 18.5 Systems with many degrees of freedom; Problems; Chapter 19 Finite element method; 19.1 The finite element method; 19.2 The analysis of simple rod elements; 19.2 Local and global coordinates; Problems; Appendix: Some mathematics help; Answers to problems; Index