Textbook
Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous FlowsISBN: 978-0-471-92452-4
Paperback
672 pages
January 1991, ©1990
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Numerical Computation of Internal and External Flows Volume 2: Computational Methods for Inviscid and Viscous Flows C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium
This second volume deals with the applications of computational methods to the problems of fluid dynamics. It complements the first volume to provide an excellent reference source in this vital and fast growing area. The author includes material on the numerical computation of potential flows and on the most up-to-date methods for Euler and Navier-Stokes equations. The coverage is comprehensive and includes detailed discussion of numerical techniques and algorithms, including implementation topics such as boundary conditions. Problems are given at the end of each chapter and there are comprehensive reference lists. Of increasing interest, the subject has powerful implications in such crucial fields as aeronautics and industrial fluid dynamics. Striking a balance between theory and application, the combined volumes will be useful for an increasing number of courses, as well as to practitioners and researchers in computational fluid dynamics.
Contents Preface Nomenclature Part V: The Numerical Computation of Potential Flows Chapter 13 The Mathematical Formulations of the Potential Flow Model Chapter 14 The Discretization of the Subsonic Potential Equation Chapter 15 The Computation of Stationary Transonic Potential Flows Part VI: The Numerical Solution of the System of Euler Equations Chapter 16 The Mathematical Formulation of the System of Euler Equations Chapter 17 The Lax - Wendroff Family of Space-centred Schemes Chapter 18 The Central Schemes with Independent Time Integration Chapter 19 The Treatment of Boundary Conditions Chapter 20 Upwind Schemes for the Euler Equations Chapter 21 Second-order Upwind and High-resolution Schemes Part VII: The Numerical Solution of the Navier-Stokes Equations Chapter 22 The Properties of the System of Navier-Stokes Equations Chapter 23 Discretization Methods for the Navier-Stokes Equations Index
This second volume deals with the applications of computational methods to the problems of fluid dynamics. It complements the first volume to provide an excellent reference source in this vital and fast growing area. The author includes material on the numerical computation of potential flows and on the most up-to-date methods for Euler and Navier-Stokes equations. The coverage is comprehensive and includes detailed discussion of numerical techniques and algorithms, including implementation topics such as boundary conditions. Problems are given at the end of each chapter and there are comprehensive reference lists. Of increasing interest, the subject has powerful implications in such crucial fields as aeronautics and industrial fluid dynamics. Striking a balance between theory and application, the combined volumes will be useful for an increasing number of courses, as well as to practitioners and researchers in computational fluid dynamics.
Contents Preface Nomenclature Part V: The Numerical Computation of Potential Flows Chapter 13 The Mathematical Formulations of the Potential Flow Model Chapter 14 The Discretization of the Subsonic Potential Equation Chapter 15 The Computation of Stationary Transonic Potential Flows Part VI: The Numerical Solution of the System of Euler Equations Chapter 16 The Mathematical Formulation of the System of Euler Equations Chapter 17 The Lax - Wendroff Family of Space-centred Schemes Chapter 18 The Central Schemes with Independent Time Integration Chapter 19 The Treatment of Boundary Conditions Chapter 20 Upwind Schemes for the Euler Equations Chapter 21 Second-order Upwind and High-resolution Schemes Part VII: The Numerical Solution of the Navier-Stokes Equations Chapter 22 The Properties of the System of Navier-Stokes Equations Chapter 23 Discretization Methods for the Navier-Stokes Equations Index