Differential Forms in ElectromagneticsISBN: 978-0-471-64801-7
Hardcover
253 pages
April 2004, Wiley-IEEE Press
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms.
In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media.
Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials.