Wiley.com
Print this page Share

NMR Spectroscopy and Polymer Microstructure: The Conformational Connection

ISBN: 978-0-471-18748-6
Hardcover
264 pages
September 1989
List Price: US $271.50
Government Price: US $187.48
Enter Quantity:   Buy
NMR Spectroscopy and Polymer Microstructure: The Conformational Connection (0471187488) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.

Preface

1. The Microstructure of Polymer Chains

1.1 Introduction

1.2 Polymers Are Macromolecules

1.3 Polymer Microstructures from Polymerization of Monomers

1.3.1 Directional Isomerism

1.3.2 Stereochemical Isomerism

1.3.3 Geometrical Isomerism

1.3.4 Truly Asymmetric Polymers

1.3.5 Copolymer Sequences

1.4 Organization of Polymer Chains

1.5 Polymer Properties and Their Relation to Microstructure

2. Nuclear Magnetic Resonance

2.1 Introduction

2.2 The NMR Phenomenon

2.2.1 Resonance

2.2.2 Interactions and Relaxations of Nuclear Spins

2.2.3 Chemical Shift

2.2.4 Spin-Spin Coupling

2.3 Experimental Observation of NMR

3. High-Resolution NMR of Polymers

3.1 Introduction

3.2 ¯1H NMR

3.3 ¯13C NMR

3.4 High-Resolution ¯13C NMR in the Solid State

3.4.1 Dipolar Broadening

3.4.2 Chemical-Shift Anisotropy

3.4.3 Cross-Polarization

3.5 Two-Dimensional NMR

3.6 Other Nuclei-¯15N, ¯19F, ¯29Si, and ¯31p

4. ¯13C NMR of Polymers

4.1 Introduction

4.2 ¯13C Chemical Shifts and Their Dependence on Microstructure

4.2.1 ¯13C Nuclear Shielding

4.2.2 Substituent Effects on ¯13C Chemical Shifts

4.2.3 The -Substituent Effect in ¯13C NMR

4.2.4 -gauche Effects in ¯13C NMR

5. -gauche Effect Method of Predicting ¯13C NMR Chemical Shifts

5.1 Introduction

5.2 Polymer Conformations

5.2.1 Rotational Isomeric-State Model of Polymers

5.2.2 Average Bond Conformations

5.3 -gauche Effect Calculation of ¯13C NMR Chemical Shifts

5.3.1 Small-Molecule Example

5.3.2 Macromolecular Example

6. Determination of Stereosequences in Vinyl Polymers

6.1 Introduction

6.2 Traditional Methods

6.2.1 Stereoregular Polymers

6.2.2 Epimerization of Stereoregular Polymers

6.2.3 Model Compounds

6.2.4 Assumed Polymerization Mechanism

6.3 2D NMR Determination of Vinyl Polymer Stereosequence

6.4 Application of -gauche Effect Method

6.5 Establishing Vinyl Polymerization Mechanisms from Stereosequence Analysis

7. Microstructural Defects in Polymers

7.1 Introduction

7.2 Determining the Regiosequence of PVF_2

7.2.1 ¯13C NMR

7.2.2 ¯19F NMR

7.2.3 2D ¯19F NMR

7.3 Regiosequence Defects in PPO

8. Copolymer Microstructure

8.1 Introduction

8.2 Comonomer Sequences

8.3 Copolymer Stereosequences

8.4 Copolymer Conformations

8.5 Copolymerization Mechanisms

9. Chemically Modified Polymers

9.1 Introduction

9.2 Transformation of PVC to Ethylene-Vinyl Chloride Copolymers

9.2.1 Tri-n-butyltin Hydride Reduction of PVC

9.2.2 Microstructures of E-V Copolymers

9.2.3 (n-Bu)_3SnH Reduction of PVC Model Compounds

9.2.4 Computer Simulation of TCH and PVC Reduction

9.3 Modification of 1,4-Poly(butadienes) with Dihalocarbenes

9.3.1 Possible Microstructures in the Dihalocarbene Adducts of PBD

9.3.2 NMR of Dihalocarbene Adducts of PBD

10. Biopolymers

10.1 Introduction

10.2 Polypeptides

10.2.1 2D NMR Assignment of ¯1H Resonances

10.2.2 Determination of Polypeptide Conformation by 2D NMR

10.3 Polynucleotides

10.4 Polysaccharides

11. Solid Polymers

11.1 Introduction

11.2 Solid-State Polymer Conformation

11.3 Interchain Packing in Solid Polymers

11.4 Molecular Motion in Solid Polymers

11.5 Application of CPMAS/DD ¯13C NMR to Solid Polymers

11.5.1 Morphology and Motion in Polymer Crystals

11.5.2 Solid-Solid Polymer Phase Transitions

11.6 Other Nuclei Observed In Solid-State Polymer Spectra

11.6.1 CPMAS/DD ¯29Si NMR

11.6.2 MAS/DD ¯31p NMR

11.6.3 CPMAS/DD ¯15N NMR

11.7 Concluding Remarks
Back to Top