Statistical Learning TheoryISBN: 978-0-471-03003-4
Hardcover
768 pages
September 1998
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
Partial table of contents:
THEORY OF LEARNING AND GENERALIZATION.
Two Approaches to the Learning Problem.
Estimation of the Probability Measure and Problem of Learning.
Conditions for Consistency of Empirical Risk Minimization Principle.
The Structural Risk Minimization Principle.
Stochastic Ill-Posed Problems.
SUPPORT VECTOR ESTIMATION OF FUNCTIONS.
Perceptrons and Their Generalizations.
SV Machines for Function Approximations, Regression Estimation, and Signal Processing.
STATISTICAL FOUNDATION OF LEARNING THEORY.
Necessary and Sufficient Conditions for Uniform Convergence of Frequencies to Their Probabilities.
Necessary and Sufficient Conditions for Uniform One-Sided Convergence of Means to Their Expectations.
Comments and Bibliographical Remarks.
References.
Index.
THEORY OF LEARNING AND GENERALIZATION.
Two Approaches to the Learning Problem.
Estimation of the Probability Measure and Problem of Learning.
Conditions for Consistency of Empirical Risk Minimization Principle.
The Structural Risk Minimization Principle.
Stochastic Ill-Posed Problems.
SUPPORT VECTOR ESTIMATION OF FUNCTIONS.
Perceptrons and Their Generalizations.
SV Machines for Function Approximations, Regression Estimation, and Signal Processing.
STATISTICAL FOUNDATION OF LEARNING THEORY.
Necessary and Sufficient Conditions for Uniform Convergence of Frequencies to Their Probabilities.
Necessary and Sufficient Conditions for Uniform One-Sided Convergence of Means to Their Expectations.
Comments and Bibliographical Remarks.
References.
Index.