Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels, 2nd EditionISBN: 978-0-470-97290-8
Hardcover
680 pages
March 2011, Wiley-IEEE Press
|
Other Related Wiley–IEEE Press Books.
Acknowledgements.
1 Historical Perspective, Motivation and Outline.
1.1 A Historical Perspective on Channel Coding.
1.2 Motivation for this Book.
1.3 Organisation of the Book.
1.4 NovelContributions of the Book.
2 Convolutional Channel Coding.
2.1 Brief Channel Coding History.
2.2 Convolutional Encoding.
2.3 State and Trellis Transitions.
2.4 The Viterbi Algorithm.
2.5 Summary and Conclusions.
3 Soft Decoding and Performance of BCH Codes.
3.1 Introduction.
3.2 BCH codes.
3.3 Trellis Decoding.
3.4 Soft-input Algebraic Decoding.
3.5 Summary and Conclusions.
Part I Turbo Convolutional and Turbo Block Coding.
4 Turbo Convolutional Coding (J. P. Woodard and L. Hanzo).
4.1 Introduction.
4.2 Turbo Encoder.
4.3 Turbo Decoder.
4.4 Turbo-coded BPSK Performance over Gaussian Channels.
4.5 Turbo Coding Performance over Rayleigh Channels.
4.6 Summary and Conclusions.
5 Turbo BCH Coding.
5.1 Introduction.
5.2 Turbo Encoder.
5.3 Turbo Decoder.
5.4 Turbo Decoding Example.
5.5 MAP Algorithm for Extended BCH Codes.
5.6 Simulation Results.
5.7 Summary and Conclusions.
Part II Space–time Block and Space–time Trellis Coding.
6 Space–time Block Codes.
6.1 Classification of Smart Antennas.
6.2 Introduction to Space–time Coding.
6.3 Background.
6.4 Space–time Block Codes.
6.5 Channel-coded Space–time Block Codes.
6.6 Performance Results.
6.7 Summary and Conclusions.
7 Space–time Trellis Codes.
7.1 Introduction.
7.2 Space–time Trellis Codes.
7.3 Space–time-coded Transmission over Wideband Channels.
7.4 Simulation Results.
7.5 Space–time-coded Adaptive Modulation for OFDM.
7.6 Summary and Conclusions.
8 Turbo-coded Adaptive Modulation versus Space–time Trellis Codes for Transmission over Dispersive Channels.
8.1 Introduction.
8.2 System Overview.
8.3 Simulation Parameters.
8.4 Simulation Results.
8.5 Summary and Conclusions.
Part III Turbo Equalisation.
9 Turbo-coded Partial-response Modulation.
9.1 Motivation.
9.2 The Mobile Radio Channel.
9.3 Continuous Phase Modulation Theory.
9.4 Digital Frequency Modulation Systems.
9.5 State Representation.
9.6 Spectral Performance.
9.7 Construction of Trellis-based Equaliser States.
9.8 Soft-output GMSK Equaliser and Turbo Coding.
9.9 Summary and Conclusions.
10 Turbo Equalisation for Partial-response Systems.
10.1 Motivation.
10.2 Principle of Turbo Equalisation Using Single/Multiple Decoder(s).
10.3 Soft-in/Soft-out Equaliser for Turbo Equalisation.
10.4 Soft-in/Soft-out Decoder for Turbo Equalisation.
10.5 Turbo Equalisation Example.
10.6 Summary of Turbo Equalisation.
10.7 Performance of Coded GMSK Systems Using Turbo Equalisation.
10.8 Discussion of Results.
10.9 Summary and Conclusions.
11 Comparative Study of Turbo Equalisers.
11.1 Motivation.
11.2 SystemOverview.
11.3 Simulation Parameters.
11.4 Results and Discussion.
11.5 Non-iterative Joint Channel Equalisation and Decoding.
11.6 Summary and Conclusions.
12 Reduced-complexity Turbo Equaliser.
12.1 Motivation.
12.2 Complexity of the Multilevel Full-response Turbo Equaliser.
12.3 System Model.
12.4 In-phase/Quadrature-phase Equaliser Principle.
12.5 Overview of the Reduced-complexity Turbo Equaliser.
12.6 Complexity of the In-phase/Quadrature-phase Turbo Equaliser.
12.7 System Parameters.
12.8 System Performance.
12.9 Summary and Conclusions.
13 Turbo Equalisation for Space–time Trellis-coded Systems.
13.1 Introduction.
13.2 System Overview.
13.3 Principle of In-phase/Quadrature-phase Turbo Equalisation.
13.4 Complexity Analysis.
13.5 Results and Discussion.
13.6 Summary and Conclusions.
Part IV Coded and Space–time-Coded Adaptive Modulation: TCM, TTCM, BICM, BICM-ID and MLC.
14 Coded Modulation Theory and Performance.
14.1 Introduction.
14.2 Trellis-coded Modulation.
14.3 The Symbol-based MAP Algorithm.
14.4 Turbo Trellis-coded Modulation.
14.5 Bit-interleaved Coded Modulation.
14.6 Bit-interleaved Coded Modulation Using Iterative Decoding.
14.7 Coded Modulation Performance.
14.8 Near-capacity Turbo Trellis-coded Modulation Design Based on EXIT Charts and Union Bounds.
14.9 Summary and Conclusions.
15 Multilevel Coding Theory.
15.1 Introduction.
15.2 Multilevel Coding.
15.3 Bit-interleaved Coded Modulation.
15.4 Bit-interleaved Coded Modulation Using Iterative Decoding.
15.5 Conclusion.
16 MLC Design Using EXIT Analysis.
16.1 Introduction.
16.2 Comparative Study of Coded Modulation Schemes.
16.3 EXIT-chart Analysis.
16.4 Precoder-aided MLC.
16.5 Chapter Conclusions.
17 Sphere Packing-aided Space–time MLC/BICMDesign.
17.1 Introduction.
17.2 Space–time Block Code.
17.3 Orthogonal G2 Design Using Sphere Packing.
17.4 Iterative Demapping for Sphere Packing.
17.5 STBC-SP-MLC.
17.6 STBC-SP-BICM.
17.7 Chapter Conclusions.
18 MLC/BICMSchemes for theWireless Internet.
18.1 Introduction.
18.2 Multilevel Generalised Low-density Parity-check Codes.
18.3 An Iterative Stopping Criterion for MLC-GLDPCs.
18.4 Coding for theWireless Internet.
18.5 LT-BICM-ID Using LLR Packet Reliability Estimation.
18.6 Chapter Conclusions.
19 Near-capacity Irregular BICM-ID Design.
19.1 Introduction.
19.2 Irregular Bit-interleaved Coded Modulation Schemes.
19.3 EXIT-chart Analysis.
19.4 Irregular Components.
19.5 Simulation Results.
19.6 Chapter Conclusions.
20 Summary and Conclusions.
20.1 Summary of the Book.
20.2 Future Work.
20.3 Concluding Remarks.
Bibliography.
Subject Index.
Author Index.