Wiley.com
Print this page Share

Reliability and Risk: A Bayesian Perspective

ISBN: 978-0-470-85502-7
Hardcover
376 pages
September 2006
List Price: US $157.00
Government Price: US $108.76
Enter Quantity:   Buy
Reliability and Risk: A Bayesian Perspective (0470855029) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 15-20 days delivery time. The book is not returnable.

We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications.

Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by:

  • Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis.
  • Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book.
  • Introducing the notion of “composite reliability”, or the collective reliability of a population of items.
  • Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk.

Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.

Related Titles

More From This Series

by Samuel Kotz, Narayanaswamy Balakrishnan, Norman L. Johnson
by Thomas R. Fleming, David P. Harrington
by Bovas Abraham, Johannes Ledolter
by Paul P. Biemer (Editor), Robert M. Groves (Editor), Lars E. Lyberg (Editor), Nancy A. Mathiowetz (Editor), Seymour Sudman (Editor)

Bayesian Analysis

by Peter E. Rossi, Greg M. Allenby, Rob McCulloch
by Franco Taroni, Silvia Bozza, Alex Biedermann, Paolo Garbolino, Colin Aitken
Back to Top