Applied Gas DynamicsISBN: 978-0-470-82576-1
Hardcover
680 pages
October 2010
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
About the Author.
1 Basic Facts.
1.1 Definition of Gas Dynamics.
1.2 Introduction.
1.3 Compressibility.
1.4 Supersonic Flow – What is it?
1.5 Speed of Sound.
1.6 Temperature Rise.
1.7 Mach Angle.
1.8 Thermodynamics of Fluid Flow.
1.9 First Law of Thermodynamics (Energy Equation).
1.10 The Second Law of Thermodynamics (Entropy Equation).
1.11 Thermal and Calorical Properties.
1.12 The Perfect Gas.
1.13 Wave Propagation.
1.14 Velocity of Sound.
1.15 Subsonic and Supersonic Flows.
1.16 Similarity Parameters.
1.17 Continuum Hypothesis.
1.18 Compressible Flow Regimes.
1.19 Summary.
Exercise Problems.
2 Steady One-Dimensional Flow.
2.1 Introduction.
2.2 Fundamental Equations.
2.3 Discharge from a Reservoir.
2.4 Streamtube Area–Velocity Relation.
2.5 de Laval Nozzle.
2.6 Supersonic Flow Generation.
2.7 Performance of Actual Nozzles.
2.8 Diffusers.
2.9 Dynamic Head Measurement in Compressible Flow.
2.10 Pressure Coefficient.
2.11 Summary.
Exercise Problems.
3 Normal Shock Waves.
3.1 Introduction.
3.2 Equations of Motion for a Normal Shock Wave.
3.3 The Normal Shock Relations for a Perfect Gas.
3.4 Change of Stagnation or Total Pressure Across a Shock.
3.5 Hugoniot Equation.
3.6 The Propagating Shock Wave.
3.7 Reflected Shock Wave.
3.8 Centered Expansion Wave.
3.9 Shock Tube.
3.10 Summary.
Exercise Problems.
4 Oblique Shock and ExpansionWaves.
4.1 Introduction.
4.2 Oblique Shock Relations.
4.3 Relation between β and θ.
4.4 Shock Polar.
4.5 Supersonic Flow Over a Wedge.
4.6 Weak Oblique Shocks.
4.7 Supersonic Compression.
4.8 Supersonic Expansion by Turning.
4.9 The Prandtl–Meyer Expansion.
4.10 Simple and Nonsimple Regions.
4.11 Reflection and Intersection of Shocks and Expansion Waves.
4.12 Detached Shocks.
4.13 Mach Reflection.
4.14 Shock-Expansion Theory.
4.15 Thin Aerofoil Theory.
4.15.1 Application of Thin Aerofoil Theory.
4.16 Summary.
Exercise Problems.
5 Compressible Flow Equations.
5.1 Introduction.
5.2 Crocco's Theorem.
5.3 General Potential Equation for Three-Dimensional Flow.
5.4 Linearization of the Potential Equation.
5.5 Potential Equation for Bodies of Revolution.
5.6 Boundary Conditions.
5.7 Pressure Coefficient.
5.8 Summary.
Exercise Problems.
6 Similarity Rule.
6.1 Introduction.
6.2 Two-Dimensional Flow: The Prandtl-Glauert Rule for Subsonic Flow.
6.3 Prandtl–Glauert Rule for Supersonic Flow: Versions I and II.
6.4 The von Karman Rule for Transonic Flow.
6.5 Hypersonic Similarity.
6.6 Three-Dimensional Flow: Gothert’s Rule.
6.7 Summary.
Exercise Problems.
7 Two-Dimensional Compressible Flows.
7.1 Introduction.
7.2 General Linear Solution for Supersonic Flow.
7.3 Flow Over a Wave-Shaped Wall.
7.4 Summary.
Exercise Problems.
8 Flow with Friction and Heat Transfer.
8.1 Introduction.
8.2 Flow in Constant Area Duct with Friction.
8.4 Flow with Heating or Cooling in Ducts.
8.5 Summary.
Exercise Problems.
9 Method of Characteristics.
9.1 Introduction.
9.2 The Concepts of Characteristic.
9.3 The Compatibility Relation.
9.4 The Numerical Computational Method.
9.5 Theorems for Two-Dimensional Flow.
9.6 Numerical Computation with Weak Finite Waves.
9.7 Design of Supersonic Nozzle.
9.8 Summary.
10 Measurements in Compressible Flow.
10.1 Introduction.
10.2 Pressure Measurements.
10.3 Temperature Measurements.
10.4 Velocity and Direction.
10.5 Density Problems.
10.6 Compressible Flow Visualization.
10.7 Interferometer.
10.8 Schlieren System.
10.9 Shadowgraph.
10.10 Wind Tunnels.
10.11 Hypersonic Tunnels.
10.12 Instrumentation and Calibration of Wind Tunnels.
10.13 Calibration and Use of Hypersonic Tunnels.
10.14 Flow Visualization.
10.15 Summary.
Exercise Problems.
11 Ramjet.
11.1 Introduction.
11.2 The Ideal Ramjet.
11.3 Aerodynamic Losses.
11.4 Aerothermodynamics of Engine Components.
11.5 Flow Through Inlets.
11.6 Performance of Actual Intakes.
11.7 Shock–Boundary Layer Interaction.
11.8 Oblique Shock Wave Incident on Flat Plate.
11.9 Normal Shocks in Ducts.
11.10 External Supersonic Compression.
11.11 Two-Shock Intakes.
11.12 Multi-Shock Intakes.
11.13 Isentropic Compression.
11.14 Limits of External Compression.
11.15 External Shock Attachment.
11.16 Internal Shock Attachment.
11.17 Pressure Loss.
11.18 Supersonic Combustion.
11.19 Summary.
12 Jets.
12.1 Introduction.
12.2 Mathematical Treatment of Jet Profiles.
12.3 Theory of Turbulent Jets.
12.4 Experimental Methods for Studying Jets and the Techniques Used for Analysis.
12.5 Expansion Levels of Jets.
12.6 Control of Jets.
12.7 Summary.
Appendix.
References.
Index.