Cooperative Path Planning of Unmanned Aerial VehiclesISBN: 978-0-470-74129-0
Hardcover
214 pages
December 2010
|
Series Preface.
Preface.
Acknowledgements.
List of Figures.
List of Tables.
Nomenclature.
1. Introduction.
1.1 Path Planning Formulation.
1.2 Path Planning Constraints.
1.3 Cooperative Path Planning and Mission Planning.
1.4 Path Planning – An Overview.
1.5 The Road Map Method.
1.6 Probabilistic Methods.
1.7 Potential Field.
1.8 Cell Decomposition.
1.9 Optimal Control.
1.10 Optimization Techniques.
1.11 Trajectories for Path Planning.
1.12 Outline of the Book.
References.
2. Path Planning in Two Dimensions.
2.1 Dubins Paths.
2.2 Designing Dubins Path using Analytical Geometry.
2.3 Existence of Dubins Paths.
2.4 Length of Dubins Paths.
2.5 Design of Dubins Paths using Principles of Differential Geometry.
2.6 Path of Continuous Curvature.
2.7 Producing Flyable Clothoid Paths.
28 Producing Flyable Pythagorean Hodograph Paths (2D).
References.
3. Path Planning in Three Dimensions.
3.1 Dubins Paths in Three Dimensions Using Differential Geometry.
3.2 Path Length – Dubins 3D.
3.3 Pythagorean Hodograph Paths – 3D.
3.4 Design of Flyable Paths Using PH Curves.
References.
4. Collision Avoidance.
4.1 Research into Obstacle Avoidance.
4.2 Obstacle Avoidance for Mapped Obstacles.
4.3 Obstacle Avoidance of Unmapped Static Obstacles.
4.4 Algorithmic Implementation.
References.
5. Path-Following Guidance.
5.1 Path Following the Dubins Path.
5.2 Linear Guidance Algorithm.
5.3 Nonlinear Dynamic Inversion Guidance.
5.4 Dynamic Obstacle Avoidance Guidance.
References.
6. Path Planning for Multiple UAVs.
6.1 Problem Formulation.
6.2 Simultaneous Arrival.
6.3 Phase I: Producing Flyable Paths.
6.4 Phase II: Producing Feasible Paths.
6.5 Phase III: Equalizing Path Length.
6.6 Multiple Path Algorithm.
6.7 Algorithm Application for Multiple UAVs.
6.8 2D Pythagorean Hodograph Paths.
6.9 3D Dubins Paths.
6.10 3D Pythagorean Hodograph Paths.
References.
Appendix A Differential Geometry.
Appendix B. Pythagorean Hodograph.
Index.