Wiley.com
Print this page Share

Methods of Molecular Quantum Mechanics: An Introduction to Electronic Molecular Structure

ISBN: 978-0-470-68442-9
Hardcover
298 pages
December 2009
List Price: US $182.00
Government Price: US $126.04
Enter Quantity:   Buy
Methods of Molecular Quantum Mechanics: An Introduction to Electronic Molecular Structure (0470684429) cover image
Other Available Formats: Paperback

Preface.

1 Principles.

1.1 The Orbital Model.

1.2 Mathematical Methods.

1.3 Basic Postulates.

1.4 Physical Interpretation of the Basic Principles.

2 Matrices.

2.1 Definitions and Elementary Properties.

2.2 Properties of Determinants.

2.3 Special Matrices.

2.4 The Matrix Eigenvalue Problem.

3 Atomic Orbitals.

3.1 Atomic Orbitals as a Basis for Molecular Calculations.

3.2 Hydrogen-Like Orbitals (HAOs).

3.3 Slater-Type Orbitals (STOs).

3.4 Gaussian-Type Orbitals (GTOs).

4 The Variation Method.

4.1 Variational Principles.

4.2 Non-Linear Parameters.

4.3 Linear Parameters and the Ritz Method.

4.4 Applications of the Ritz Method.

5 Spin.

5.1 The Zeeman Effect.

5.2 The Pauli Equations for 1-Electron Spin.

5.3 The Dirac Formula for N-Electron Spin.

6 Antisymmetry of Many-Electron Wavefunctions.

6.1 Antisymmetry Requirement and the Pauli Principle.

6.2 Slater Determinants.

6.3 Distribution Functions.

6.4 Average Values of Operators.

7 SCF Calculations and Model Hamiltonians.

7.1 Elements of Hartree-Fock Theory for Closed Shells.

7.2 Roothaan Formulation of the LCAO-MO-SCF Equations.

7.3 Molecular SCF Calculations.

7.4 Hückel Theory.

7.5 A Model for the 1-Dimensional Crystal.

8 Post-Hartree-Fock Methods.

8.1 Configuration Interaction (CI).

8.2 Multiconfiguration SCF.

8.3 Møller-Plesset (MP) Theory.

8.4 MP-R12 Method.

8.5 CC-R12 Method.

9.6 Density Functional Theory (DFT).

9 VB Theory and the Chemical Bond.

9.1 The Born-Oppenheimer Approximation.

9.2 The Hydrogen Molecule H2.

9.3 The Origin of the Chemical Bond.

9.3 Valence Bond (VB) Theory and the Chemical Bond.

9.4 Hybridization and Molecular Structure.

9.5 Pauling’s Formula for Conjugated and Aromatic Hydrocarbons.

10 Elements of Rayleigh-Schroedinger (RS) Perturbation Theory.

10.1 RS Perturbation Equations up to Third Order.

10.2 First-Order Theory.

10.3 Second-Order Theory.

10.4 Approximate E2 Calculations: the Hylleraas’ Functional.

10.5 Linear Pseudostates and Molecular Properties.

10.6 Quantum Theory of Magnetic Susceptibilities.

11 Atomic and Molecular Interactions.

11.1 The H-H Non-Expanded Interactions up to Second Order.

11.2 The H-H Expanded Interactions up to Second Order.

11.3 Molecular Interactions.

11.4 Van der Waals and Hydrogen Bonds.

11.5 The Keesom Interaction.

12 Symmetry.

12.1 Molecular Symmetry.

12.2 Group Theoretical Methods.

12.3 Illustrative Examples.

References.

Author Index.

Subject Index.

Back to Top