Wiley.com
Print this page Share

Fundamentals of Electric Propulsion: Ion and Hall Thrusters

ISBN: 978-0-470-42927-3
Hardcover
526 pages
November 2008
List Price: US $173.75
Government Price: US $114.52
Enter Quantity:   Buy
Fundamentals of Electric Propulsion: Ion and Hall Thrusters (0470429275) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 15-20 days delivery time. The book is not returnable.

Note from the Series Editor.

Foreword.

Preface.

Acknowledgments.

Chapter 1: Introduction.

1.1 Electric Propulsion Background.

1.2 Electric Thruster Types.

1.3 Ion Thruster Geometry.

1.4 Hall Thruster Geometry.

1.5 Beam/Plume Characteristics.

References.

Chapter 2: Thruster Principles.

2.1 The Rocket Equation.

2.2 Force Transfer in Ion and Hall Thrusters.

2.3 Thrust.

2.4 Specific Impulse.

2.5 Thruster Efficiency.

2.6 Power Dissipation.

2.7 Neutral Densities and Ingestion in Electric Thrusters.

References.

Problems.

Chapter 3: Basic Plasma Physics.

3.1 Introduction.

3.2 Maxwell’s Equations.

3.3 Single Particle Motions.

3.4 particle Energies and Velocities.

3.5 Plasma as a Fluid.

3.6 Diffusion in Partially Ionized Gases.

3.7 Sheaths at the Boundaries of Plasmas.

References.

Problems.

Chapter 4: Ion Thruster Plasma Generators.

4.1 Introduction.

4.2 Idealized Ion Thruster Plasma Generator.

4.3 DC Discharge Ion Thruster.

4.4 Kaufman Ion Thrusters.

4.5 rf Ion Thrusters.

4.6 Microwave Ion Thrusters.

4.7 2-D Computer Models of the Ion Thruster Discharge Chamber.

References.

Problems.

Chapter 5: Ion Thruster Accelerator Grids.

5.1 Grid Configurations.

5.2 Ion Accelerator Basics.

5.3 Ion Optics.

5.4 Electron Backstreaming.

5.5 High-Voltage Considerations.

5.6 Ion Accelerator Grid Life.

References.

Problems.

Chapter 6: Hollow Cathodes.

6.1 Introduction.

6.2 Cathode Configurations.

6.3 Thermionic Electron Emitter Characteristics.

6.4 Insert Region Plasma.

6.5 Orifice Region Plasma.

6.6 Hollow cathode Thermal Models.

6.7 Cathode Plume-Region Plasma.

6.8 Hollow Cathode Life.

6.9 Keeper Wear and Life.

6.10 Hollow Cathode Operation.

References.

Problems.

Chapter 7: Hall Thrusters.

7.1 Introduction.

7.2 Thruster Operating Principles and Scaling.

7.3 Hall Thruster Performance Models.

7.4 Channel Physics and Numerical Modeling.

7.5 Hall Thruster Life.

References.

Problems.

Chapter 8: Ion and Hall Thruster Plumes.

8.1 Introduction.

8.2 Plume Physics.

8.3 Plume Models.

8.4 Spacecraft Interactions.

8.5 Interactions with Payloads.

References.

Problems.

Chapter 9: Flight Ion and Hall Thrusters.

9.1 Introduction.

9.2 Ion Thrusters.

9.3 Hall Thrusters.

References.

Appendices.

A: Nomenclature.

B: Gas Flow Unit Conversions and Cathode Pressure Estimates.

C: Energy Loss by Electrons.

D: Ionization and Excitation Cross Sections for Xenon.

E: Ionization and Excitation Reaction Rates for Xenon in Maxwellian Plasmas.

F: Electron Relaxation and Thermalization Times.

G: Clausing Factor Monte Carlo Calculation.

Index..

Related Titles

Aeronautic & Aerospace

by Peter Hagedorn, Anirvan DasGupta
by Warren F. Phillips
by Peter J. Swatton
by Allan Seabridge, Shirley Morgan
by Dr Subchan Subchan, Rafal Zbikowski
Back to Top