Wiley.com
Print this page Share

Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications

Rafael A. Auras (Editor), Loong-Tak Lim (Editor), Susan E. M. Selke (Editor), Hideto Tsuji (Editor)
ISBN: 978-0-470-29366-9
Hardcover
528 pages
October 2010
List Price: US $189.25
Government Price: US $121.12
Enter Quantity:   Buy
Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications (0470293667) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 15-20 days delivery time. The book is not returnable.

Preface xvii

Contributors xxi

Part I Chemistry and Production of Lactic Acid, Lactide, and Poly(Lactic Acid) 1

1 Production and Purification of Lactic Acid and Lactide 3
Wim Groot, Jan van Krieken, Olav Sliekersl, and Sicco de Vos

1.1 Introduction 3

1.2 Lactic Acid 4

1.2.1 History of Lactic Acid 4

1.2.2 Physical Properties of Lactic Acid 4

1.2.3 Chemistry of Lactic Acid 4

1.2.4 Production of Lactic Acid by Fermentation 5

1.2.5 Downstream Processing/Purification of Lactic Acid 8

1.2.6 Quality/Specifications of Lactic Acid 10

1.3 Lactide 10

1.3.1 Physical Properties of Lactide 10

1.3.2 Production of Lactide 11

1.3.3 Purification of Lactide 13

1.3.4 Quality and Specifications of Polymer-Grade Lactide 14

1.3.5 Concluding Remarks on Polymer-Grade Lactide 16

References 16

2 Chemistry and Thermodynamic Properties of Lactic Acid and Lactide and Solvent Miscibility 19
Zhengyu Jin, Yaoqi Tian, and Jinpeng Wang

2.1 General Properties 19

2.1.1 Physical and Chemistry Properties of Lactic Acid 19

2.1.2 Physical and Chemical Properties of Lactide 19

2.2 Thermodynamic Properties 19

2.2.1 Vapor Pressures of Lactic Acids at Different Temperatures 19

2.2.2 Temperature Dependence of Densities of Lactic Acid 20

2.2.3 Temperature Dependence of Viscosity of Lactic Acid 20

2.2.4 Thermodynamic Properties 21

2.3 Miscibility Properties of Lactic Acid and Lactide 21

2.3.1 Miscibility of Lactic Acid with Different Solvents 21

2.3.2 Miscibility of Lactic Acid with Modifiers in Diluents 21

2.3.3 Physical and Chemical Equilibrium of Lactic Acid 22

2.3.4 Miscibility of Lactide with Solvents 25

References 25

3 Industrial Production of High Molecular Weight Poly(Lactic Acid) 27
Anders Södergård and Mikael Stolt

3.1 Introduction 27

3.2 Lactic Acid Based Polymers by Polycondensation 28

3.2.1 Direct Condensation 29

3.2.2 Solid-State Polycondensation 30

3.2.3 Azeotropic Dehydration 31

3.3 Lactic Acid Based Polymers by Chain Extension 32

3.3.1 Chain Extension with Diisocyanates 32

3.3.2 Chain Extension with Bis-2-oxazoline 33

3.3.3 Dual Linking Processes 34

3.3.4 Chain Extension with Bis-epoxies 34

3.4 Lactic Acid Based Polymers by Ring-Opening Polymerization 34

3.4.1 Polycondensation Processes 35

3.4.2 Lactide Manufacturing 35

3.4.3 Ring-Opening Polymerization 36

References 37

4 Design and Synthesis of Different Types of Poly(Lactic Acid) 43
Ann-Christine Albertsson, Indra Kumari Varma, Bimlesh Lochab, Anna Finne-Wistrand, and Kamlesh Kumar

4.1 Introduction 43

4.2 Copolymerization 43

4.2.1 Synthesis of Copolymers of Lactic Acid: Glycolic Acid 44

4.2.2 Synthesis of Copolymers of Lactic Acid: Poly(ethylene glycol) 44

4.2.3 Synthesis of Copolymers of Lactic Acid: d-Valerolactone and Lactic Acid: b-Butyrolactone 45

4.2.4 Synthesis of Copolymers of Lactic Acid: e-Caprolactone 46

4.2.5 Synthesis of Copolymers of Lactic Acid: 1,5-Dioxepan-2-one 46

4.2.6 Synthesis of Copolymers of Lactic Acid: Trimethylene Carbonate 46

4.2.7 Synthesis of Copolymers of Lactic Acid: Poly(N-isopropylacrylamide) 47

4.2.8 Synthesis of LA: Alkylthiophene (P3AT) Copolymers 47

4.2.9 Functional Poly(lactic acid) 47

4.2.10 Branched Copolymers 48

4.3 Properties of Copolymers 53

4.3.1 Degradation of Homo- and Copolymers 54

4.3.2 Drug Delivery from PLLA Copolymers 54

4.3.3 Radiation Effects 55

References 55

5 Structure and Properties of Stereocomplex-Type Poly(lactic acid) 59
Masayuki Hirata and Yoshiharu Kimura

5.1 Introduction 59

5.2 Formation of Stereocomplex Crystals 59

5.3 Thermal Properties of sc-PLA 60

5.4 Crystal Structure of sc-PLA 60

5.4.1 Unit Cell Parameters and Molecular Conformation of sc-PLA 60

5.4.2 Density and Heat of Fusion of Sccrystals 60

5.5 Formation of sb-PLA 61

5.5.1 ROP Routes to Diblock and Multiblock sb-PLA 61

5.5.2 SSP Routes to Multiblock sb-PLA 63

5.6 Applications of sc-PLA 64

References 65

Part II Properties of Poly(Lactic Acid) 67

6 Chemical Structure of Poly(lactic acid) 69
Xue Jiang, Yan Luo, Xiuzhi Tian, Dan Huang, Narendra Reddy, and Yiqi Yang

6.1 Introduction 69

6.2 Chain Structure and Configuration 69

6.2.1 Chain Structure 69

6.2.2 Configuration 70

6.2.3 Interlocked Structure, Polymer Blend, and Resistance to Hydrolysis 71

6.3 Syndiotactic Polymerization and Syndiotacticity 72

6.4 Conformation 74

6.5 Amorphous Structure and Thermal Properties 74

6.5.1 Amorphous and Three-Phase Models 74

6.5.2 Glass Transition 75

6.6 Orientation Structure of PLA 77

6.6.1 Mechanical Orientation by Stretching or Compression 77

6.6.2 Thermal Orientation (Phase Transition) 77

6.7 Semicrystalline Structure 78

6.7.1 General 78

6.7.2 Three Forms (a, b and c) of the Crystal Structure 78

6.8 Frustrated Structure 79

6.9 Molecular Weight 80

6.10 Summary 80

References 80

7 Chemical Compatibility of Poly(lactic acid): A Practical Framework Using Hansen Solubility Parameters 83
Steven Abbott

7.1 A Practical Framework 83

7.1.1 Thermodynamics Versus Kinetics 83

7.1.2 Hansen Solubility Parameters 83

7.2 Solvent Compatibility 84

7.3 Plasticizers 86

7.4 Polymer Compatibility 87

7.5 Environmental Stress Cracking 89

7.6 Rational Composite Design 89

7.7 Diffusion and Barrier Properties 90

7.7.1 Gases 91

7.7.2 Water 91

7.8 Pharmacological Transport 93

7.9 Summary 93

References 94

8 Optical Properties 97
Carla M. B. Gonçalves, João A. P. Coutinho, and Isabel M. Marrucho

8.1 Introduction 97

8.2 Absorption and Transmission of UV-Vis Radiation 97

8.3 Refractive Index 99

8.4 Specific Optical Rotation 100

8.5 Infrared and Raman Spectroscopy 100

8.5.1 Infrared Spectroscopy 101

8.5.2 Raman Spectroscopy 105

8.6 1H and 13C NMR Spectroscopy 108

References 111

9 Crystallization and Thermal Properties 113
Luca Fambri and Claudio Migliaresi

9.1 Introduction 113

9.2 Crystallinity and Crystallization 114

9.3 Crystallization Regime 118

9.4 Fibers 119

9.5 Hydrolytic Degradation 121

References 123

10 Rheology of Poly(lactic acid) 125
John R. Dorgan

10.1 Introduction 125

10.2 Fundamental Chain Properties from Dilute Solution Viscometry 126

10.2.1 Unperturbed Chain Dimensions 126

10.2.2 Real Chains 126

10.2.3 Solution Viscometry 127

10.2.4 Viscometry of PLA 128

10.3 Processing of PLA: General Considerations 130

10.4 Melt Rheology: An Overview 131

10.5 Processing of PLA: Rheological Properties 132

10.6 Conclusions 137

Appendix 10.A Description of the Software 138

References 138

11 Mechanical Properties 141
Gabriele Perego and Gian Domenico Cella

11.1 Introduction 141

11.2 General Mechanical Properties and Molecular Weight Effect 141

11.2.1 Tensile and Flexural Properties 141

11.2.2 Impact Resistance 143

11.2.3 Hardness 143

11.3 Temperature Effect 143

11.4 Annealing 144

11.5 Orientation 147

11.6 Stereoregularity 148

11.7 Plasticization 149

11.8 Relaxation and Aging 151

11.9 Conclusions 152

References 152

12 Permeation, Sorption, and Diffusion in Poly(lactic acid) 155
Eva Almenar and Rafael Auras

12.1 Introduction 155

12.2 Factors Affecting Permeability, Sorption, and Diffusion in PLA 157

12.2.1 L-Lactide Unit Content 157

12.2.2 Plasticizers 158

12.2.3 Crystallization 159

12.2.4 Orientation 160

12.2.5 Free volume 160

12.2.6 Branching 160

12.2.7 Environmental Factors 161

12.3 Permeability, Sorption, and Diffusion of Pure PLA 163

12.3.1 Gases 163

12.3.2 Water Vapor 165

12.3.3 Organics 167

12.4 Copolymers 169

12.5 PLA Blends 169

12.5.1 PLA/Starch Blends 169

12.5.2 PLA/Poly(€-caprolactone) Blends 170

12.5.3 PLA/Chitosan Blends 171

12.5.4 PLA/Poly((R)-3-hydroxybutyrate) Blends 171

12.6 PLA Laminations 171

12.7 Coated PLA 171

12.8 PLA Composites and Fibers 171

12.8.1 PLA Composites 172

12.8.2 Fiber-Reinforced PLA 172

12.9 PLA Nanocomposites 172

12.10 Future of PLA Membranes 176

References 176

13 Migration 181
Herlinda Soto-Valdez

13.1 Migration Principles 181

13.2 Legislation 182

13.3 Migration and Toxicological Data of Lactic Acid, Lactide, Dimers and Oligomers 182

13.3.1 Lactic Acid 182

13.3.2 Lactide 186

13.3.3 Oligomers 186

13.4 EDI of Lactic Acid 187

13.5 Other Potential Migrants from PLA 187

13.6 Conclusions 187

References 188

Part III Processing and Conversion of Poly(Lactic Acid) 189

14 Processing of Poly(lactic acid) 191
Loong-Tak Lim, Kevin Cink, and Tim Vanyo

14.1 Introduction 191

14.2 Properties of PLA Relevant to Processing 191

14.3 Modification of PLA Properties by Process Aids and Other Additives 193

14.4 Drying 194

14.5 Extrusion 195

14.6 Injection Molding 196

14.7 Film and Sheet Casting 201

14.8 Stretch Blow Molding 204

14.9 Extrusion Blown Film 207

14.10 Thermoforming 208

14.11 Electrospinning 209

14.12 Conclusion: Prospects of PLA Polymers 211

References 213

15 Poly(lactic acid)/Starch Blends 217
Long Yu, Eustathios Petinakis, Katherine Dean, and Hongshen Liu

15.1 Introduction 217

15.2 Blending Hydrophobic PLA with Hydrophilic Starch 218

15.3 Compatibilizers Used for Starch/PLA Blends 219

15.4 Enhancing Function of Compatibilizer by Controlling Compatibilizer Distribution 220

15.5 Reactive Blending 223

15.6 Summary 225

References 225

16 Poly(lactic acid) Blends 227
Sukeewan Detyothin, Ajay Kathuria, Waree Jaruwattanayon, Susan E. M. Selke, and Rafael Auras

16.1 Introduction 227

16.2 PLA/Nonbiodegradable Polymer Blends 227

16.2.1 Polyolefins 228

16.2.2 Vinyl and Vinylidene Polymers and Copolymers 229

16.2.3 Elastomers and Rubbers 238

16.2.4 PMMA/PLA Blends 239

16.3 PLA/Biodegradable Polymer Blends 240

16.3.1 Polyanhydrides 240

16.3.2 Vinyl and Vinylidene Polymers and Copolymers 242

16.3.3 Aliphatic Polyesters and Copolyesters 244

16.3.4 Aliphatic-Aromatic Copolyester 255

16.3.5 Elastomers and Rubbers 257

16.3.6 Poly(ester amide) 258

16.3.7 Polyethers and Copolymer 258

16.3.8 Annually Renewable Biodegradable Materials 261

16.4 Plasticization of PLA 264

16.5 Conclusion 266

References 266

17 Foaming 273
Laurent M. Matuana

17.1 Introduction 273

17.2 Plastic Foams 273

17.3 Foaming Agents 274

17.3.1 Physical Foaming Agents 274

17.3.2 Chemical Foaming Agents 274

17.4 Formation of Cellular Plastics 275

17.4.1 Dissolution of Blowing Agent in Polymer 275

17.4.2 Bubble Formation 275

17.4.3 Bubble Growth and Stabilization 276

17.5 Plastic Foams Expanded with Physical Foaming Agents 276

17.5.1 Microcellular Foamed Polymers 276

17.5.2 Solid State Batch Microcellular Foaming Process 277

17.5.3 Microcellular Foaming in a Continuous Process 282

17.6 PLA Foamed with Chemical Foaming Agents 286

17.6.1 Effect of CFA Content 286

17.6.2 Effect of Processing Conditions 287

17.7 Mechanical Properties of PLA Foams 288

17.7.1 Batch Microcellular Foamed PLA 288

17.7.2 Microcellular Extrusion of PLA 288

17.7.3 Microcellular Injection Molding of PLA 288

17.8 Foaming of PLA/starch Blends 289

References 289

18 Composites 293
Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh, and Mohini Sain

18.1 Introduction 293

18.2 PLA Matrix 293

18.3 Reinforcements 294

18.3.1 Natural Fiber Reinforcement 294

18.3.2 Synthetic Fiber Reinforcement 295

18.3.3 Organic Filler Reinforcement 296

18.3.4 Inorganic Filler Reinforcement 298

18.4 Fiber/Matrix Adhesion 298

18.4.1 Surface Modification 298

18.4.2 Compatibilizing Agent 299

18.5 PLA Nanocomposites 299

18.6 Processing 300

18.7 Properties 300

18.7.1 Mechanical Properties 300

18.7.2 Thermal Properties 303

18.7.3 Degradation 304

18.8 Applications 305

18.8.1 Biomedical Applications 305

18.8.2 Packaging Applications 306

18.8.3 Automotive Applications 306

18.8.4 Electronic Applications 307

18.9 Future Developments and Concluding Remarks 307

References 307

19 Nanocomposites 311
Suprakas Sinha Ray

19.1 Introduction 311

19.2 PLA Nanocomposites Based on Clay 312

19.2.1 Structure and Properties of Clay 312

19.2.2 Preparation and Characterization of PLA/Clay Nanocomposites 312

19.3 PLA Nanocomposites Based on Carbon Nanotubes 314

19.4 PLA Nanocomposites Based on Various Other Nanoparticles 315

19.5 Properties of PLA-Based Nanocomposites 316

19.6 Biodegradability 317

19.7 Melt Rheology 318

19.8 Foam Processing 319

19.9 Possible Applications and Future Prospects 320

Acknowledgments 321

References 321

20 Spinning of Poly(lactic acid) Fibers 323
Ashwini K. Agrawal

20.1 Defining Fiber and Fiber Spinning 323

20.2 Melt Spinning Line 323

20.3 Fluid Dynamics During Spinning 326

20.3.1 Instabilities During Flow Through Spinneret 326

20.3.2 Instabilities in the Spinning Zone: Draw Resonance 327

20.4 Structure Development During Melt Spinning 328

20.4.1 Spinning at Low Speeds 328

20.4.2 Spinning at High Speeds 328

20.5 Post-Spinning Operation 330

20.5.1 Drawing 330

20.5.2 Finish Application 330

20.5.3 Crimping 330

20.5.4 Heat Setting 330

20.6 Structure Development During Drawing 331

20.7 Solution Spinning of PLLA 333

20.7.1 Wet Spinning 334

20.7.2 Dry Spinning 335

20.7.3 Factors Affecting Solution Spinning 335

20.7.4 Dry-Jet Wet Spinning 337

20.7.5 Solution Spinning of Stereocomplex Fiber 337

20.8 Mechanical Properties 338

20.8.1 Melt-Spun PLLA 338

20.8.2 Solution-Spun PLLA 339

20.8.3 Stereocomplex Fiber 341

References 341

Part IV Degradation and Environmental Issues 343

21 Hydrolytic Degradation 345
Hideto Tsuji

21.1 Introduction 345

21.2 Degradation Mechanism 345

21.2.1 Molecular Degradation Mechanism 346

21.2.2 Material Degradation Mechanism 355

21.2.3 Degradation of Crystalline Residues 360

21.3 Parameters for Hydrolytic Degradation 362

21.3.1 Effects of Surrounding Media 362

21.3.2 Effects of Material Parameters 365

21.4 Structural and Property Changes During Hydrolytic Degradation 371

21.4.1 Fractions of Components 371

21.4.2 Crystallization 371

21.4.3 Mechanical Properties 372

21.4.4 Thermal Properties 372

21.4.5 Surface Properties 372

21.4.6 Morphology 373

21.5 Applications of Hydrolytic Degradation 373

21.5.1 Material Preparation 373

21.5.2 Recycling of PLA to Its Monomer 375

21.5.3 Miscellaneous Applications 376

21.6 Conclusions 376

References 376

22 Enzymatic Degradation 383
Tadahisa Iwata, Hideki Abe, and Yoshihiro Kikkawa

22.1 Introduction 383

22.1.1 Definition of Biodegradable Plastics 383

22.1.2 Enzymatic Degradation 383

22.2 Enzymatic Degradation of PLA Films 384

22.2.1 Structure and Substrate Specificity of Proteinase K 385

22.2.2 Enzymatic Degradability of PLLA Films 385

22.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends 386

22.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films 388

22.3 Enzymatic Degradation of Thin Films 390

22.3.1 Thin Films and Analytical Techniques 390

22.3.2 Crystalline Morphologies of Thin Films 391

22.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films 391

22.3.4 Enzymatic Degradation of LB Film 394

22.3.5 Application of Selective Enzymatic Degradation 394

22.4 Enzymatic Degradation of Lamellar Crystals 395

22.4.1 Enzymatic Degradation of PLLA Single Crystals 395

22.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals 396

22.4.3 Single Crystals of PLA Stereocomplex 397

22.5 Future Perspectives 397

References 398

23 Thermal Degradation 401
Haruo Nishida

23.1 Introduction 401

23.2 Kinetic Analysis of Thermal Degradation 401

23.2.1 Changes in Molecular Weight 401

23.2.2 Thermogravimetry 402

23.3 Thermal Degradation Behavior of PLA Based on Molecular Weight Change 403

23.4 Thermal Degradation Behavior of PLA Based on Weight Loss 403

23.4.1 Diverse Mechanisms of PLA Pyrolysis 403

23.4.2 Effects of Polymerization Catalyst Residues 404

23.4.3 Effects of Chain-End Structures 406

23.4.4 Thermal Degradation Catalysts 406

23.4.5 Thermal Degradation Behavior of PLA Stereocomplex: sc-PLA 408

23.4.6 Control of Racemization 409

23.4.7 Selective Depolymerization of PLA in Blends 409

23.5 Conclusions 410

References 410

24 Photodegradation and Radiation Degradation 413
Wataru Sakai and Naoto Tsutsumi

24.1 Introduction 413

24.2 Mechanisms of Photodegradation 413

24.2.1 Photon 413

24.2.2 Photon Absorption 414

24.2.3 Photochemical Reaction of Carbonyl Groups 415

24.3 Mechanism of Radiation Degradation 415

24.3.1 High Energy Radiation 415

24.3.2 Basic Mechanism of Radiation Degradation 415

24.4 Photodegradation of PLA 416

24.5 Photosensitized Degradation of PLA 418

24.6 Radiation Effects on PLA 419

24.7 Modification of PLA by Irradiation 420

References 420

25 Biodegradation 423
Buenaventurada P. Calabia, Yutaka Tokiwa, Charles U. Ugwu, and Seiichi Aiba

25.1 Introduction 423

25.2 Microbial Degradation 423

25.2.1 Field Test 423

25.2.2 ISO and ASTM Standards 424

25.2.3 PLLA Degrading Microorganisms 424

25.3 Poly(L-Lactide) Degrading Enzymes 426

25.3.1 Proteinase K 426

25.3.2 PLLA-Degrading Enzyme of Amycolatopsis sp. 426

25.3.3 Induction of PLLA Degrading Enzymes with Natural Substrates 426

25.3.4 Other Serine Proteases 426

25.3.5 Lipase 426

25.3.6 Enzymatic Degradation in Organic Solvents 427

25.3.7 Evolution of PLA Degrading Enzymes 428

25.4 Conclusion and Future Prospects 428

References 429

26 Cradle to Gate Environmental Footprint and Life Cycle Assessment of Poly(lactic acid) 431
Amy E. Landis

26.1 Introduction to LCA and Environmental Footprints 431

26.1.1 Life Cycle Assessment 431

26.1.2 Uncertainty in LCA 432

26.2 Life Cycle Considerations for PLA 432

26.2.1 The Life Cycle of PLA 432

26.2.2 Energy USE and Global Warming 433

26.2.3 Environmental Trade-Offs 434

26.3 Review of Biopolymer LCA Studies 434

26.4 Improving PLA’s Environmental Footprint 438

26.4.1 Agricultural Management 438

26.4.2 Feedstock Choice 439

26.4.3 Energy 439

Further Reading on LCA 440

References 440

Part V Applications 443

27 Medical Applications 445
Shuko Suzuki and Yoshito Ikada

27.1 Introduction 445

27.2 Minimal Requirements for Medical Devices 445

27.2.1 General 445

27.2.2 PLA as Medical Implants 446

27.3 Preclinical and Clinical Applications of PLA Devices 447

27.3.1 Fibers 447

27.3.2 Meshes 448

27.3.3 Bone Fixation Devices 448

27.3.4 Microspheres, Microcapsules, and Thin Coatings 453

27.4 Conclusions 454

References 454

28 Packaging and Other Commercial Applications 457
Shoji Obuchi and Shinji Ogawa

28.1 Introduction 457

28.2 Applications in Packaging and Containers 457

28.2.1 Oriented Film 457

28.2.2 Flexible Film 458

28.2.3 Shrink Labels and Film 461

28.2.4 Thermoforming 462

28.2.5 Lamination 462

28.3 Other Commercial Applications 462

28.3.1 Agricultural and Engineering Materials 462

28.3.2 Electrical Appliances 463

28.3.3 Automotive Materials 466

28.4 Conclusions 467

References 467

29 Textile Applications 469
Masatsugu Mochizuki

29.1 Introduction 469

29.2 Manufacturing, Properties, and Structure of PLA Fibers 469

29.2.1 PLA Fiber Manufacture 469

29.2.2 PLA Fibers and Textile Properties 469

29.2.3 Effects of Structure on Properties 470

29.2.4 PLA Stereocomplex Fibers 471

29.3 Key Performance Features of PLA Fibers 471

29.3.1 Biodegradability and the Biodegradation Mechanism 471

29.3.2 Moisture Management 472

29.3.3 Antibacterial/Antifungal Properties 472

29.3.4 Low Flammability 473

29.3.5 Weathering Stability 474

29.4 Potential Applications 474

29.4.1 Geotextiles 474

29.4.2 Industrial Fabrics 475

29.4.3 Filters 475

29.4.4 Towels and Wipes 475

29.4.5 Home Furnishings 475

29.4.6 Clothing and Personal Belongings 475

29.5 Conclusions 475

References 476

30 Environmental Applications 477
Akira Hiraishi

30.1 Introduction 477

30.2 Application to Water and Wastewater Treatment 477

30.2.1 Application as Sorbents 477

30.2.2 Application to Nitrogen Removal 479

30.3 Application to Bioremediation 482

30.3.1 Significance of PLA Use 482

30.3.2 Bioremediation of Organohalogen Pollution 482

30.3.3 Other Applications 483

30.4 Concluding Remarks and Prospects 484

Acknowledgments 484

References 484

Index 487

Related Titles

More From This Series

by Deyue Yan (Editor), Chao Gao (Editor), Holger Frey (Editor)
by Jingyi Xu, Lih-Sheng (Tom) Turng (Foreword by)
by Richard F Grossman (Editor)
by Domasius Nwabunma (Editor), Thein Kyu (Editor)

General Polymer Science & Technology

by Mao-Chun Hong (Editor), Ling Chen (Editor)
by Michael S. Silverstein (Editor), Neil R. Cameron (Editor), Marc A. Hillmyer (Editor)
Back to Top