Wiley.com
Print this page Share

Clustering

ISBN: 978-0-470-27680-8
Hardcover
368 pages
October 2008, Wiley-IEEE Press
List Price: US $163.25
Government Price: US $112.60
Enter Quantity:   Buy
Clustering (0470276800) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.

PREFACE.

1. CLUSTER ANALYSIS.

1.1. Classifi cation and Clustering.

1.2. Defi nition of Clusters.

1.3. Clustering Applications.

1.4. Literature of Clustering Algorithms.

1.5. Outline of the Book.

2. PROXIMITY MEASURES.

2.1. Introduction.

2.2. Feature Types and Measurement Levels.

2.3. Defi nition of Proximity Measures.

2.4. Proximity Measures for Continuous Variables.

2.5. Proximity Measures for Discrete Variables.

2.6. Proximity Measures for Mixed Variables.

2.7. Summary.

3. HIERARCHICAL CLUSTERING.

3.1. Introduction.

3.2. Agglomerative Hierarchical Clustering.

3.3. Divisive Hierarchical Clustering.

3.4. Recent Advances.

3.5. Applications.

3.6. Summary.

4. PARTITIONAL CLUSTERING.

4.1. Introduction.

4.2. Clustering Criteria.

4.3. K-Means Algorithm.

4.4. Mixture Density-Based Clustering.

4.5. Graph Theory-Based Clustering.

4.6. Fuzzy Clustering.

4.7. Search Techniques-Based Clustering Algorithms.

4.8. Applications.

4.9. Summary.

5. NEURAL NETWORK–BASED CLUSTERING.

5.1. Introduction.

5.2. Hard Competitive Learning Clustering.

5.3. Soft Competitive Learning Clustering.

5.4. Applications.

5.5. Summary.

6. KERNEL-BASED CLUSTERING.

6.1. Introduction.

6.2. Kernel Principal Component Analysis.

6.3. Squared-Error-Based Clustering with Kernel Functions.

6.4. Support Vector Clustering.

6.5. Applications.

6.6. Summary.

7. SEQUENTIAL DATA CLUSTERING.

7.1. Introduction.

7.2. Sequence Similarity.

7.3. Indirect Sequence Clustering.

7.4. Model-Based Sequence Clustering.

7.5. Applications—Genomic and Biological Sequence.

7.6. Summary.

8. LARGE-SCALE DATA CLUSTERING.

8.1. Introduction.

8.2. Random Sampling Methods.

8.3. Condensation-Based Methods.

8.4. Density-Based Methods.

8.5. Grid-Based Methods.

8.6. Divide and Conquer.

8.7. Incremental Clustering.

8.8. Applications.

8.9. Summary.

9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING.

9.1. Introduction.

9.2. Linear Projection Algorithms.

9.3. Nonlinear Projection Algorithms.

9.4. Projected and Subspace Clustering.

9.5. Applications.

9.6. Summary.

10. CLUSTER VALIDITY.

10.1. Introduction.

10.2. External Criteria.

10.3. Internal Criteria.

10.4. Relative Criteria.

10.5. Summary.

11. CONCLUDING REMARKS.

PROBLEMS.

REFERENCES.

AUTHOR INDEX.

SUBJECT INDEX.

Related Titles

More From This Series

by Plamen Angelov (Editor), Dimitar P. Filev (Editor), Nik Kasabov (Editor)
by N. V. Boulgouris (Editor), Konstantinos N. Plataniotis (Editor), Evangelia Micheli-Tzanakou (Editor)
by Gary B. Fogel (Editor), David W. Corne (Editor), Yi Pan (Editor)

More By These Authors

Back to Top