Wiley.com
Print this page Share

Multivariable Model - Building: A Pragmatic Approach to Regression Anaylsis based on Fractional Polynomials for Modelling Continuous Variables

ISBN: 978-0-470-02842-1
Hardcover
328 pages
July 2008
List Price: US $157.00
Government Price: US $90.20
Enter Quantity:   Buy
Multivariable Model - Building: A Pragmatic Approach to Regression Anaylsis based on Fractional Polynomials for Modelling Continuous Variables (0470028424) cover image
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.

Preface.

1. Introduction.

1.1 Real-Life Problems as Motivation for Model Building.

1.2 Issues in Modelling Continuous Predictors.

1.3 Types of Regression Model Considered.

1.4 Role of Residuals.

1.5 Role of Subject-Matter Knowledge in Model Development.

1.6 Scope of Model Building in our Book.

1.7 Modelling Preferences.

1.8 General Notation.

2. Selection of Variables.

2.1 Introduction.

2.2 Background.

2.3 Preliminaries for a Multivariable Analysis.

2.4 Aims of Multivariable Models.

2.5 Prediction: Summary Statistics and Comparisons.

2.6 Procedures for Selecting Variables.

2.7 Comparison of Selection Strategies in Examples.

2.8 Selection and Shrinkage.

2.9 Discussion.

3. Handling Categorical and Continuous Predictors.

3.1 Introduction.

3.2 Types of Predictor.

3.3 Handling Ordinal Predictors.

3.4 Handling Counting and Continuous Predictors: Categorization.

3.5 Example: Issues in Model Building with Categorized Variables.

3.6 Handling Counting and Continuous Predictors: Functional Form.

3.7 Empirical Curve Fitting.

3.8 Discussion.

4. Fractional Polynomials for One Variable.

4.1 Introduction.

4.2 Background.

4.3 Definition and Notation.

4.4 Characteristics.

4.5 Examples of Curve Shapes with FP1 and FP2 Functions.

4.6 Choice of Powers.

4.7 Choice of Origin.

4.8 Model Fitting and Estimation.

4.9 Inference.

4.10 Function Selection Procedure.

4.11 Scaling and Centering.

4.12 FP Powers as Approximations to Continuous Powers.

4.13 Presentation of Fractional Polynomial Functions.

4.14 Worked Example.

4.15 Modelling Covariates with a Spike at Zero.

4.16 Power of Fractional Polynomial Analysis.

4.17 Discussion.

5. Some Issues with Univariate Fractional Polynomial Models.

5.1 Introduction.

5.2 Susceptibility to Influential Covariate Observations.

5.3 A Diagnostic Plot for Influential Points in FP Models.

5.4 Dependence on Choice of Origin.

5.5 Improving Robustness by Preliminary Transformation.

5.6 Improving Fit by Preliminary Transformation.

5.7 Higher Order Fractional Polynomials.

5.8 When Fractional Polynomial Models are Unsuitable.

5.9 Discussion.

6. MFP: Multivariable Model-Building with Fractional Polynomials.

6.1 Introduction.

6.2 Motivation.

6.3 The MFP Algorithm.

6.4 Presenting the Model.

6.5 Model Criticism.

6.6 Further Topics.

6.7 Further Examples.

6.8 Simple Versus Complex Fractional Polynomial Models.

6.9 Discussion.

7. Interactions.

7.1 Introduction.

7.2 Background.

7.3 General Considerations.

7.4 The MFPI Procedure.

7.5 Example 1: Advanced Prostate Cancer.

7.6 Example 2: GBSG Breast Cancer Study.

7.7 Categorization.

7.8 STEPP.

7.9 Example 3: Comparison of STEPP with MFPI.

7.10 Comment on Type I Error of MFPI.

7.11 Continuous-by-Continuous Interactions.

7.12 Multi-Category Variables.

7.13 Discussion.

8. Model Stability.

8.1 Introduction.

8.2 Background.

8.3 Using the Bootstrap to Explore Model Stability.

8.4 Example 1: Glioma Data.

8.5 Example 2: Educational Body-Fat Data.

8.6 Example 3: Breast Cancer Diagnosis.

8.7 Model Stability for Functions.

8.8 Example 4: GBSG Breast Cancer Data.

8.9 Discussion.

9. Some Comparisons of MFP with Splines.

9.1 Introduction.

9.2 Background.

9.3 MVRS: A Procedure for Model Building with Regression Splines.

9.4 MVSS: A Procedure for Model Building with Cubic Smoothing Splines.

9.5 Example 1: Boston Housing Data.

9.6 Example 2: GBSG Breast Cancer Study.

9.7 Example 3: Pima Indians.

9.8 Example 4: PBC.

9.9 Discussion.

10. How To Work with MFP.

10.1 Introduction.

10.2 The Dataset.

10.3 Univariate Analyses.

10.4 MFP Analysis.

10.5 Model Criticism.

10.6 Stability Analysis.

10.7 Final Model.

10.8 Issues to be Aware of .

10.9 Discussion.

11. Special Topics Involving Fractional Polynomials.

11.1 Time-Varying Hazard Ratios in the Cox Model.

11.2 Age-specific Reference Intervals.

11.3 Other Topics.

12. Epilogue.

12.1 Introduction.

12.2 Towards Recommendations for Practice.

12.3 Omitted Topics and Future Directions.

12.4 Conclusion.

Appendix A: Data and Software Resources.

A.1 Summaries of Datasets.

A.2 Datasets used more than once.

A.2.1 Research Body Fat.

A.2.2 GBSG Breast Cancer.

A.2.3 Educational Body Fat.

A.2.4 Glioma.

A.2.5 Prostate Cancer.

A.2.6 Whitehall I.

A.2.7 PBC.

A.2.8 Oral Cancer.

A.2.9 Kidney Cancer.

A.3 Software.

Appendix B: Glossary of Abbreviations.

References.

Index

Related Titles

More From This Series

by Samuel Kotz, Narayanaswamy Balakrishnan, Norman L. Johnson
by Thomas R. Fleming, David P. Harrington
by Bovas Abraham, Johannes Ledolter
by Paul P. Biemer (Editor), Robert M. Groves (Editor), Lars E. Lyberg (Editor), Nancy A. Mathiowetz (Editor), Seymour Sudman (Editor)

Regression Analysis

by Wayne A. Fuller
by Douglas M. Bates, Donald G. Watts
Back to Top