3D Videocommunication: Algorithms, Concepts and Real-time Systems in Human Centred CommunicationISBN: 978-0-470-02271-9
Hardcover
320 pages
September 2005
This is a Print-on-Demand title. It will be printed specifically to fill your order. Please allow an additional 10-15 days delivery time. The book is not returnable.
|
List of Contributors xiii
Symbols xix
Abbreviations xxi
Introduction 1
Oliver Schreer, Peter Kauff and Thomas Sikora
Section I Applications of 3D Videocommunication 5
1 History of Telepresence 7
Wijnand A. IJsselsteijn
1.1 Introduction 7
1.2 The Art of Immersion: Barker’s Panoramas 10
1.3 Cinerama and Sensorama 11
1.4 Virtual Environments 14
1.5 Teleoperation and Telerobotics 16
1.6 Telecommunications 18
1.7 Conclusion 19
References 20
2 3D TV Broadcasting 23
Christoph Fehn
2.1 Introduction 23
2.2 History of 3D TV Research 24
2.3 A Modern Approach to 3D TV 26
2.3.1 A Comparison with a Stereoscopic Video Chain 28
2.4 Stereoscopic View Synthesis 29
2.4.1 3D Image Warping 29
2.4.2 A ‘Virtual’ Stereo Camera 30
2.4.3 The Disocclusion Problem 32
2.5 Coding of 3D Imagery 34
2.5.1 Human Factor Experiments 35
2.6 Conclusions 36
Acknowledgements 37
References 37
3 3D in Content Creation and Post-production 39
Oliver Grau
3.1 Introduction 39
3.2 Current Techniques for Integrating Real and Virtual Scene Content 41
3.3 Generation of 3D Models of Dynamic Scenes 44
3.4 Implementation of a Bidirectional Interface Between Real and Virtual Scenes 46
3.4.1 Head Tracking 49
3.4.2 View-dependent Rendering 50
3.4.3 Mask Generation 50
3.4.4 Texturing 51
3.4.5 Collision Detection 52
3.5 Conclusions 52
References 52
4 Free Viewpoint Systems 55
Masayuki Tanimoto
4.1 General Overview of Free Viewpoint Systems 55
4.2 Image Domain System 57
4.2.1 EyeVision 57
4.2.2 3D-TV 58
4.2.3 Free Viewpoint Play 59
4.3 Ray-space System 59
4.3.1 FTV (Free Viewpoint TV) 59
4.3.2 Bird’s-eye View System 60
4.3.3 Light Field Video Camera System 62
4.4 Surface Light Field System 64
4.5 Model-based System 65
4.5.1 3D Room 65
4.5.2 3D Video 66
4.5.3 Multi-texturing 67
4.6 Integral Photography System 68
4.6.1 NHK System 68
4.6.2 1D-II 3D Display System 70
4.7 Summary 70
References 71
5 Immersive Videoconferencing 75
Peter Kauff and Oliver Schreer
5.1 Introduction 75
5.2 The Meaning of Telepresence in Videoconferencing 76
5.3 Multi-party Communication Using the Shared Table Concept 79
5.4 Experimental Systems for Immersive Videoconferencing 83
5.5 Perspective and Trends 87
Acknowledgements 88
References 88
Section II 3D Data Representation and Processing 91
6 Fundamentals of Multiple-view Geometry 93
Spela Ivekovic, Andrea Fusiello and Emanuele Trucco
6.1 Introduction 93
6.2 Pinhole Camera Geometry 94
6.3 Two-view Geometry 96
6.3.1 Introduction 96
6.3.2 Epipolar Geometry 97
6.3.3 Rectification 102
6.3.4 3D Reconstruction 104
6.4 N-view Geometry 106
6.4.1 Trifocal Geometry 106
6.4.2 The Trifocal Tensor 108
6.4.3 Multiple-view Constraints 109
6.4.4 Uncalibrated Reconstruction from N views 110
6.4.5 Autocalibration 111
6.5 Summary 112
References 112
7 Stereo Analysis 115
Nicole Atzpadin and Jane Mulligan
7.1 Stereo Analysis Using Two Cameras 115
7.1.1 Standard Area-based Stereo Analysis 117
7.1.2 Fast Real-time Approaches 120
7.1.3 Post-processing 123
7.2 Disparity From Three or More Cameras 125
7.2.1 Two-camera versus Three-camera Disparity 127
7.2.2 Correspondence Search with Three Views 128
7.2.3 Post-processing 129
7.3 Conclusion 130
References 130
8 Reconstruction of Volumetric 3D Models 133
Peter Eisert
8.1 Introduction 133
8.2 Shape-from-Silhouette 135
8.2.1 Rendering of Volumetric Models 136
8.2.2 Octree Representation of Voxel Volumes 137
8.2.3 Camera Calibration from Silhouettes 139
8.3 Space-carving 140
8.4 Epipolar Image Analysis 143
8.4.1 Horizontal Camera Motion 143
8.4.2 Image Cube Trajectory Analysis 145
8.5 Conclusions 148
References 148
9 View Synthesis and Rendering Methods 151
Reinhard Koch and Jan-Friso Evers-Senne
9.1 The Plenoptic Function 152
9.1.1 Sampling the Plenoptic Function 152
9.1.2 Recording of the Plenoptic Samples 153
9.2 Categorization of Image-based View Synthesis Methods 154
9.2.1 Parallax Effects in View Rendering 154
9.2.2 Taxonomy of IBR Systems 156
9.3 Rendering Without Geometry 158
9.3.1 The Aspen Movie-Map 158
9.3.2 Quicktime VR 158
9.3.3 Central Perspective Panoramas 159
9.3.4 Manifold Mosaicing 159
9.3.5 Concentric Mosaics 161
9.3.6 Cross-slit Panoramas 162
9.3.7 Light Field Rendering 162
9.3.8 Lumigraph 163
9.3.9 Ray Space 164
9.3.10 Related Techniques 164
9.4 Rendering with Geometry Compensation 165
9.4.1 Disparity-based Interpolation 165
9.4.2 Image Transfer Methods 166
9.4.3 Depth-based Extrapolation 167
9.4.4 Layered Depth Images 168
9.5 Rendering from Approximate Geometry 169
9.5.1 Planar Scene Approximation 169
9.5.2 View-dependent Geometry and Texture 169
9.6 Recent Trends in Dynamic IBR 170
References 172
10 3D Audio Capture and Analysis 175
Markus Schwab and Peter Noll
10.1 Introduction 175
10.2 Acoustic Echo Control 176
10.2.1 Single-channel Echo Control 177
10.2.2 Multi-channel Echo Control 179
10.3 Sensor Placement 181
10.4 Acoustic Source Localization 182
10.4.1 Introduction 182
10.4.2 Real-time System and Results 183
10.5 Speech Enhancement 185
10.5.1 Multi-channel Speech Enhancement 186
10.5.2 Single-channel Noise Reduction 187
10.6 Conclusions 190
References 191
11 Coding and Standardization 193
Aljoscha Smolic and Thomas Sikora
11.1 Introduction 193
11.2 Basic Strategies for Coding Images and Video 194
11.2.1 Predictive Coding of Images 194
11.2.2 Transform Domain Coding of Images and Video 195
11.2.3 Predictive Coding of Video 198
11.2.4 Hybrid MC/DCT Coding for Video Sequences 199
11.2.5 Content-based Video Coding 201
11.3 Coding Standards 202
11.3.1 JPEG and JPEG 2000 202
11.3.2 Video Coding Standards 202
11.4 MPEG-4 — an Overview 204
11.4.1 MPEG-4 Systems 205
11.4.2 BIFS 205
11.4.3 Natural Video 206
11.4.4 Natural Audio 207
11.4.5 SNHC 208
11.4.6 AFX 209
11.5 The MPEG 3DAV Activity 210
11.5.1 Omnidirectional Video 210
11.5.2 Free-viewpoint Video 212
11.6 Conclusion 214
References 214
Section III 3D Reproduction 217
12 Human Factors of 3D Displays 219
Wijnand A. IJsselsteijn, Pieter J.H. Seuntiëns and Lydia
M.J. Meesters
12.1 Introduction 219
12.2 Human Depth Perception 220
12.2.1 Binocular Disparity and Stereopsis 220
12.2.2 Accommodation and Vergence 222
12.2.3 Asymmetrical Binocular Combination 223
12.2.4 Individual Differences 224
12.3 Principles of Stereoscopic Image Production and Display 225
12.4 Sources of Visual Discomfort in Viewing Stereoscopic Displays 226
12.4.1 Keystone Distortion and Depth Plane Curvature 227
12.4.2 Magnification and Miniaturization Effects 228
12.4.3 Shear Distortion 229
12.4.4 Cross-talk 229
12.4.5 Picket Fence Effect and Image Flipping 230
12.5 Understanding Stereoscopic Image Quality 230
References 231
13 3D Displays 235
Siegmund Pastoor
13.1 Introduction 235
13.2 Spatial Vision 236
13.3 Taxonomy of 3D Displays 237
13.4 Aided-viewing 3D Display Technologies 238
13.4.1 Colour-multiplexed (Anaglyph) Displays 238
13.4.2 Polarization-multiplexed Displays 239
13.4.3 Time-multiplexed Displays 239
13.4.4 Location-multiplexed Displays 240
13.5 Free-viewing 3D Display Technologies 242
13.5.1 Electroholography 242
13.5.2 Volumetric Displays 243
13.5.3 Direction-multiplexed Displays 244
13.6 Conclusions 258
References 258
14 Mixed Reality Displays 261
Siegmund Pastoor and Christos Conomis
14.1 Introduction 261
14.2 Challenges for MR Technologies 263
14.3 Human Spatial Vision and MR Displays 264
14.4 Visual Integration of Natural and Synthetic Worlds 265
14.4.1 Free-form Surface-prism HMD 265
14.4.2 Waveguide Holographic HMD 266
14.4.3 Virtual Retinal Display 267
14.4.4 Variable-accommodation HMD 267
14.4.5 Occlusion Handling HMD 268
14.4.6 Video See-through HMD 269
14.4.7 Head-mounted Projective Display 269
14.4.8 Towards Free-viewing MR Displays 270
14.5 Examples of Desktop and Hand-held MR Systems 273
14.5.1 Hybrid 2D/3D Desktop MR System with Multimodal
Interaction 273
14.5.2 Mobile MR Display with Markerless Video-based Tracking
275
14.6 Conclusions 278
References 279
15 Spatialized Audio and 3D Audio Rendering 281
Thomas Sporer and Sandra Brix
15.1 Introduction 281
15.2 Basics of Spatial Audio Perception 281
15.2.1 Perception of Direction 282
15.2.2 Perception of Distance 283
15.2.3 The Cocktail Party Effect 283
15.2.4 Final Remarks 284
15.3 Spatial Sound Reproduction 284
15.3.1 Discrete Multi-channel Loudspeaker Reproduction 284
15.3.2 Binaural Reproduction 287
15.3.3 Multi-object Audio Reproduction 287
15.4 Audiovisual Coherence 291
15.5 Applications 293
15.6 Summary and Outlook 293
References 293
Section IV 3D Data Sensors 297
16 Sensor-based Depth Capturing 299
João G.M. Gonçalves and Vítor Sequeira
16.1 Introduction 299
16.2 Triangulation-based Sensors 301
16.3 Time-of-flight-based Sensors 303
16.3.1 Pulsed Wave 304
16.3.2 Continuous-wave-based Sensors 304
16.3.3 Summary 308
16.4 Focal Plane Arrays 308
16.5 Other Methods 309
16.6 Application Examples 309
16.7 The Way Ahead 311
16.8 Summary 311
References 312
17 Tracking and User Interface for Mixed Reality
315
Yousri Abdeljaoued, David Marimon i Sanjuan, and Touradj
Ebrahimi
17.1 Introduction 315
17.2 Tracking 316
17.2.1 Mechanical Tracking 317
17.2.2 Acoustic Tracking 317
17.2.3 Inertial Tracking 318
17.2.4 Magnetic Tracking 318
17.2.5 Optical Tracking 320
17.2.6 Video-based Tracking 320
17.2.7 Hybrid Tracking 323
17.3 User Interface 324
17.3.1 Tangible User Interfaces 324
17.3.2 Gesture-based Interfaces 325
17.4 Applications 328
17.4.1 Mobile Applications 328
17.4.2 Collaborative Applications 329
17.4.3 Industrial Applications 329
17.5 Conclusions 331
References 331
Index 335