Textbook of in vivo Imaging in VertebratesISBN: 978-0-470-01528-5
Hardcover
388 pages
October 2007
|
Introduction.
1 Nuclear Magnetic Resonance Imaging and Spectroscopy (Anne Leroy-Willig and Danielle Geldwerth-Feniger).
1.0 Introduction.
1.1 Magnets and magnetic field.
1.2 Nuclear magnetization.
1.3 Excitation and return to equilibrium of nuclear magnetization.
1.4 The NMR hardware: RF coils and gradient coils (more technology).
1.5 NMR spectroscopy: the chemical encoding.
1.6 How to build NMR images: the spatial encoding.
1.7 MRI and contrast.
1.8 Sensitivity, spatial resolution and temporal resolution.
1.9 Contrast agents for MRI.
1.10 Imaging of ‘other’ nuclei.
1.11 More parameters contributing to MRI contrast.
1.12 More about applications.
2 High Resolution X-ray Microtomography: Applications in Biomedical Research (Nora De Clerck and Andrei Postnov).
2.0 Introduction.
2.1 Principles of tomography.
2.2 Implementation.
2.3 Contribution of microtomography to biomedical imaging.
3 Ultrasound Imaging (S. Lori Bridal, Jean-Michel Correas and Genevieve Berger).
3.1 Principles of ultrasonic imaging and its adaptation to small laboratory animals.
3.2 Pulse-echo transmission.
3.3 Ultrasonic transducers.
3.4 From echoes to images.
3.5 Blood flow and tissue motion.
3.6 Non-linear and contrast imaging.
3.7 Discussion.
4 In Vivo Radiotracer Imaging (Bertrand Tavitian, Regine Trebossen, Roberto Pasqualini and Frederic Dolle´).
4.0 Introduction.
4.1 Radioactivity.
4.2 Interaction of gamma rays with matter.
4.3 Radiotracer imaging with gamma emitters.
4.4 Detection of positron emitters.
4.5 Image properties and analysis.
4.6 Radiochemistry of gamma-emitting radiotracers.
4.7 Radiochemistry of positron-emitting radiotracers.
4.8 Major radiotracers and imaging applications.
5 Optical Imaging and Tomography (Antoine Soubret and Vasilis Ntziachristos).
5.0 Introduction.
5.1 Light – tissue interactions.
5.2 Light propagation in tissues.
5.3 Reconstruction and inverse problem.
5.4 Fluorescence molecular tomography (FMT).
6 Optical Microscopy in Small Animal Research (Rakesh K. Jain, Dai Fukumura, Lance Munn and Edward Brown).
6.0 Introduction.
6.1 Confocal laser scanning microscopy.
6.2 Multiphoton laser scanning microscopy.
6.3 Variants for In vivo imaging.
6.4 Surgical preparations.
6.5 Applications.
7 New Radiotracers, Reporter Probes and Contrast Agents (Coordinated by Bertrand Tavitian).
7.0 Introduction (Bertrand Tavitian).
7.1 New radiotracers (Bertrand Tavitian, Roberto Pasqualini and Frederic Dolle´).
7.2 Multimodal constructs for magnetic resonance imaging (Willem J.M. Mulder, Gustav J. Strijkers and Klaas Nicolay).
7.3 Fluorescence reporters for biomedical imaging (Benedict Law and Ching-Hsuan Tung).
7.4 New contrast agents for NMR (Silvio Aime).
7.5 Imaging techniques – reporter gene imaging agents (Huongfeng Li and Andreas H. Jacobs).
8 Multi-Modality Imaging (Coordinated by Vasilis Ntziachristos).
8.0 Introduction (Vasilis Ntziachristos).
8.1 Concurrent imaging versus computer-assisted registration (Fred S. Azar).
8.2 Combination of SPECT and CT (Jan Grimm).
8.3 FMT registration with MRI (Vasilis Ntziachristos).
9 Brain Imaging (Coordinated by Anne Leroy-Willig).
9.0 Introduction (Anne Leroy-Willig).
9.1 Bringing amyloid into focus with MRI microscopy (Greet Vanhoutte and Annemie Van der Linden).
9.2 Cerebral blood volume and BOLD contrast MRI unravels brain responses to ambient temperature fluctuations in fish (Annemie Van der Linden).
9.3 Assessment of functional and neuroanatomical re-organization after experimental stroke using MRI (Jet P. van der Zijden and Rick M. Dijkhuizen).
9.4 Brain activation and blood flow studies with speckle imaging (Andrew K. Dunn).
9.5 Manganese-enhanced MRI of the songbird brain: a dynamic window on rewiring brain circuits encoding a versatile behaviour (Vincent Van Meir and Annemie Van der Linden).
9.6 Functional MRI in awake behaving monkeys (Wim Vanduffel, Koen Nelissen, Denis Fize and Guy A. Orban).
9.7 Multimodal evaluation of mitochondrial impairment in a primate model of Huntington’s disease (Vincent Lebon and Philippe Hantraye).
10 Imaging of Heart, Muscle, Vessels (Coordinated by Yves Fromes).
10.0 Introduction (Yves Fromes).
10.1 Cardiac structure and function (Yves Fromes).
10.2 Evaluation of therapeutic approaches in muscular dystrophy using MRI (Valerie Allamand).
10.3 Canine muscle oxygen saturation: evaluation and treatment of M-type phosphofructokinase deficiency (Kevin McCully and Urs Giger).
10.4 In vivo assessment of myocardial perfusion by NMR technology (Jorg. U.G. Streif, Matthias Nahrendorf and Wolfgang R. Bauer).
10.5 Ultrasound microimaging of strain in the mouse heart (F. Stuart Foster).
10.6 MR imaging of experimental atherosclerosis (Willem J.M. Mulder, Gustav J. Strijkers, Zahi A. Fayad and Klaas Nicolay).
11 Tumor Imaging (Coordinated by Vasilis Ntziachristos).
11.0 Introduction (Vasilis Ntziachristos).
11.1 Dynamic contrast-enhanced MRI of tumour angiogenesis (Charles Andre´ Cuenod, Laure Fournier, Daniel Balvay, Clement Pradel, Nathalie Siauve and Olivier Clement).
11.2 Liver tumours: Evaluation by functional computed tomography (Charles Andre Cuenod, Laure Fournier, Nathalie Siauve and Olivier Clement).
11.3 Early detection of grafted Wilms’ tumours (Erwan Jouannot).
11.4 Angiogenesis study using ultrasound imaging (Olivier Lucidarme).
11.5 Nuclear imaging of apoptosis in animal tumour models (Silvana Del Vecchio and Marco Salvatore).
11.6 Optical imaging of tumour-associated protease activity (Benedict Law and Ching-Hsuan Tung).
11.7 Tumour angiogenesis and blood flow (Rakesh K. Jain, Dai Fukumura, Lance L. Munn and Edward B. Brown).
11.8 Optical imaging of apoptosis in small animals (Eyk Schellenberger).
11.9 Fluorescence molecular tomography (FMT) of angiogenesis (Xavier Montet, Vasilis Ntziachristos, and Ralph Weissleder).
11.10 High resolution X-ray microtomography as a tool for imaging lung tumours in living mice (Nora De Clerck and Andrei Postnov).
12 Other Organs (Coordinated by Anne Leroy-Willig).
12.0 Introduction (Anne Leroy-Willig).
12.1 3D imaging of embryos and mouse organs by Optical Projection Tomography (James Sharpe).
12.2 Visualizing early Xenopus development with time lapse microscopic MRI (Cyrus Papan and Russell E. Jacobs).
12.3 Ultrasonic quantification of red blood cells development in mice (Johann Le Floch).
12.4 Placental perfusion MR imaging with contrast agent in a mouse model (Nathalie Siauve, Laurent Salomon and Charles Andre Cuenod).
12.5 Characterization of nephropathies and monitoring of renal stem cell therapies (Nicolas Grenier, Olivier Hauger, Yahsou Delmas and Christian Combe).
12.6 Optical imaging of lung inflammation (Jodi Haller).
12.7 Optical imaging in rheumatoid arthritis (Andreas Wunder).
13 Gene Therapy (Markus Klein and Andreas H. Jacobs).
13.0 Introduction.
13.1 Expression systems for genes of interest (GOI).
13.2 Gene delivery systems (vectors).
13.3 Suicide gene therapy.
13.4 Non-suicide gene therapy.
13.5 Imaging of gene expression.
13.6 Diseases targeted by gene therapy.
14 Cellular Therapies and Cell Tracking (Coordinated by Yves Fromes).
14.0 Introduction (Yves Fromes).
14.1 Are stem cells attracted by pathology? The case for cellular tracking by serial in vivo MRI (Michel Modo).
14.2 Cell tracking using MRI (Vıt Herynek).
14.3 Cell labelling strategies for in vivo molecular MR imaging (Mathias Hoehn).
14.4 Animal imaging and medical challenges - cell labelling and molecular imaging (Yannic Waerzeggers, and Andreas H. Jacobs).
Index.