Wiley.com
Print this page Share

Inorganic Mass Spectrometry: Principles and Applications

ISBN: 978-0-470-01200-0
Hardcover
514 pages
December 2007
List Price: US $254.75
Government Price: US $175.96
Enter Quantity:   Buy
Inorganic Mass Spectrometry: Principles and Applications (0470012005) cover image

Contents.

Preface.

Acknowledgement.

Introduction to mass spectrometry.

1. History of mass spectrometric techniques.

2. Ion sources.

2.1.Inductively coupled plasma ion source.

2.1.1.Laser ablation coupled to an inductively coupled plasma source.

2.1.2.Electrothermal vaporization coupled to an inductively coupled plasma source.

2.1.3.Hydride generation and cold vapor technique for sample introduction in an ICP source.

2.2.Spark ion source.

2.3.Laser ion source.

2.3.1. Non-resonant laser ionization.

2.3.2. Resonant laser ionization.

2.4.Glow discharge ion source

2.5.Thermal surface ion source.

2.6. Ion sources for secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS)

2.7.Electron impact ion source.

2.8.Matrix assisted laser desorption/ ionization source.

2.9.Electrospray ion source.

3.Ion separation systems.

3.1 Sector field analyser.
3.1.1. Magnetic sector field analyser.
3.1.2. Electric sector field analyser.
3.1.3. Combination of magnetic and electric sector fields - double focusing sector field mass spectrometer
3.2.Dynamic separation systems.
3.2.1. Quadrupole mass analyzer.
3.2.2.   Time-of-flight analyser

3.2.3. Ion trap mass analyzer.
3.2.4. Ion cyclotron resonance mass analyser.
3.3. Mass resolution and abundance sensitivity.

4. Ion detection systems
4.1. Faraday cup.
4.2. Secondary electron multiplier.
4.3. Combination of Faraday cup and secondary electron multiplier.
4.4. Channel electron multiplier.
4.5. Daly detector.
4.6. Multiple ion collection system.
4.7. Fluorescence screen and photographic ion detection.

5.Instrumentation
5.1. Inductively coupled plasma mass spectrometers (ICP-MS).
5.1.1. Quadrupole based ICP mass spectrometers (ICP-QMS).
5.1.2. ICP mass spectrometers with collision or dynamic reaction cell or collision reaction interface.
5.1.3. Double focusing sector field ICP mass spectrometers with single ion collector (ICP-SFMS).
5.1.4. Time-of-flight mass spectrometers (ToF-MS)
5.1.5. Multiple ion collector ICP mass spectrometers (MC-ICP-MS).
5.1.6. Solution introduction systems in ICP-MS.
5.1.6.1. Pneumatic nebulizers including selected micronebulizers.
5.1.6.2. Ultrasonic nebulizer.
5.1.7 Hydride generation and cold vapor technique.
5.1.8 Flow injection technique and hyphenated techniques.
5.1.9 Laser ablation ICP-MS (LA-ICP-MS).
5.2. Spark source mass spectrometers (SSMS)
5.3. Laser ionization mass spectrometers (LIMS).
5.4. Resonance ionization mass spectrometers (RIMS).
5.5. Glow discharge mass spectrometers (GDMS).
5.6. Termal ionization mass spectrometers (TIMS).
5.7. Secondary ion mass spectrometers (SIMS) and sputted neutral mass spectrometers.(SNMS).
5.8. Accelerator mass spectrometers (AMS)
5.9. Electron impact mass spectrometers.
5.10. Knudsen effusion mass spectrometers.

6. Analytical and practical considerations.
6.1. Qualitative analysis by inorganic mass spectrometry.
6.1.1. Isotopic pattern.
6.1.2. Mass determination.
6.1.3. Interference problems.
6.2. Quantification procedures in inorganic mass spectrometry.
6.2.1. Semi-quantitative analysis.
6.2.2. One point calibration in solid sate mass spectrometry using a certified reference material.
6.2.3. Quantification of analytical data via calibration curves in mass spectrometry using certified reference materials or defined standard solutions.
6.2.4. Isotope dilution technique.
6.2.5. Quantification in solid state mass spectrometry using synthetic laboratory standards.
6.2.6. Solution based calibration in LA-ICP-MS.
6.2.6.1. External calibration technique in solution based calibration in LA-ICP-MS.
6.2.6.2. Standard addition technique in solution based calibration in LA-ICP-MS.
6.2.6.3. On-line isotope dilution in solution based calibration in LA-ICP-MS.
6.3. Sample preparation and pretreatment in inorganic mass spectrometry.
6.3.1. Sample preparation for analysis of solids.
6.3.2. Sample preparation for ICP-MS.
6.3.3. Trace matrix separation and preconcentration steps.

7.Mass spectrometric techniques for analysis of gaseous materials and volatile compounds.
7.1. Sampling and sample preparation of gases and volatile compounds
7.2. Applications of inorganic mass spectrometry for analysis of gases and volatile compounds.
7.3. Stable isotope ratio measurements of gases and volatile compounds.

8.      Isotope ratio measurements and their application
8.1. Capability of inorganic mass spectrometry in isotope ratio measurements
8.2. Limits for precision and accuracy of isotope ratio measurements and how to solve the problems
8.3. Isotope ratio measurements by gas source mass spectrometry.
8.4. Isotope ratio measurements by quadrupole based ICP-MS.
8.5. Isotope ratio measurements by laser ablation ICP-MS
8.6. Multiple ion collector mass spectrometry for high precise isotope ratio measurements
8.7. Application of isotope dilution technique
8.8. Isotope analysis of long-lived radionuclides
8.9.     Application of isotope ratio measurements in geochemistry and geochronology
9. Fields of application of inorganic and mass spectrometry in trace, ultratrace and surface analysis.

9.1. Material science.
9.1.1. Trace and ultratrace (bulk) analysis of metals and alloys.
9.1.2. Semiconductors.
9.1.3. Ceramics, glasses, polymers and other non-conductors  
9.1.4. Thin and thick film analysis.
9.1.5. Analysis of surface contamination and of process chemicals used in
semiconductor technology
9.1.6. Microlocal analysis in material research.
9.1.7. Imaging mass spectrometry in material research.
9.2. Environmental science and environmental control.
9.2.1. Analysis of water samples.
9.2.2. Analysis of air samples, particles and smoke
9.2.3. Multielemental analysis of environmental samples for environmental control.
9.2.4. Environmental monitoring of selected elements, group elements and
         trace element species
9.2.5. Isotope ratio measurements in environmental samples.
9.2.6. Monitoring of radionuclides in the environment
9.3. Biology.

9.3.1. Multielement analysis on biological samples
9.3.2. Elemental speciation in biological samples
9.3.3. Analysis of P, metals and metalloids bounded to proteins
9.3.4. Isotope ratio measurements of biological systems
9.3.5. Trace and imaging analysis on biological tissues and single cells
9.4. Bioengineering
9.4.1. Activities in bioengineering and analytics.
9.4.2. Nanobiotechnology.
9.5.Medicine.
9.5.1. Sampling, sample handling and storage of medical samples.
9.5.2. Body fluid.
9.5.2.1. Analysis of blood and serum.
9.5.2.2. Analysis of urine.
9.5.3. Hair, nail, tooth and bone analysis.
9.5.4. Microanalysis of small amount of medical samples.
9.5.5. P, S, Se and metal determination in proteins.
9.5.6. Analysis of tissues.
9.5.7. Imaging mass spectrometry on medical tissues.
9.5.8. Single cell analysis.
9.5.9. Ultrafine particles and health.
9.6. Food analysis.
9.6.1. Determination of trace elements and species in foodstuffs.
9.6.2. Analysis of mineral and bottle water.
9.6.3. Fingerprinting of foods by trace analysis and isotope ratio measurements.
9.7. Geology and geochemistry.
9.7.1. Sample preparation techniques of geological samples.
9.7.2. Fractionation effects in LA-ICP-MS.
9.7.3. Multielementanalysis of geological samples.
9.7.4. Trace analysis of selected elements in geological materials
9.7.5. Isotope analysis including age determination of minerals and rocks by mass spectrometry.
9.7.5.1. Study of isotope fine variation in nature.
9.7.5.2. Age dating methods in geosciences.
- U - Pb, Th - Pb and Pb-Pb methods for age dating.
- Rb - Sr method for age dating.
- Sm-Nd method for age dating.
- Lu-Hf-method for age dating.
- Re-Os-method for age dating
- K-Ar/Ca-system for age dating.
- 14C dating
9.7.6. Mass spectrometric microlocal and imaging analysis of geological samples.
9.8. Cosmochemistry, planetary  and space science.
9.8.1. Cosmochemical trace analysis.
9.8.2. Isotope analysis in cosmochemistry.
9.8.3. Cosmogenic radionuclides and age dating.
9.9.Determination of long-lived radionuclides.
9.9.1. Determination of half live of long-lived radionuclides.
9.9.2 Methodical developments and applications of ICP-MS for determination of long-lived radionuclides including trace/matrix separation.
9.9.3. Ultratrace analysis of long-lived radionuclides in very small sample volumes.
9.9.4. Determination of long-lived radionuclides by LA-ICP-MS and ETV-ICP-MS.
9.9.5. Particle analysis by inorganic mass spectrometry.
9.10. Forensic application.
9.10.1. Fingerprinting in forensic studies.
9.10.2. Multielement analysis for forensic studies.
9.10.3. Trace element analysis of selected elements and speciation.
9.10.4. Nuclear forensic studies.
9.10.5. Forensic investigations by isotope ratio measurements.
9.11. Study of cluster and polyatomic ion formation by mass spectrometry.
9.11.1. Carbon and boron nitride cluster ion formation.
9.11.2. Formation of selected heteronuclear cluster ions.
9.11.3. Cluster ions from metal oxide/graphite mixture
9.11.4. Argon diatomic ions.
9.11.5. Oxide ion formation of long-lived radionuclides in ICP-MS.
9.12.Further applications.
9.12.1.Pharmaceutical applications and analysis of drugs.
9.12.2.Archaeology.
10.Future developments.

APPENDIX.
Appendix I:Table of isotopic abundances, atomic mass and ionization energies of elements.
Appendix II: Table of atomic weights of elements.
Appendix III: Definition.
Appendix IV: Abbreviations and Acronyms.
Appendix V: List of standard reference materials for isotope ratio measurements.

Related Titles

Mass Spectrometry

by Pietro Traldi, Franco Magno, Irma Lavagnini, Roberta Seraglia
by Anthony I. Mallet, Steve Down
by Edmond de Hoffmann, Vincent Stroobant
by Agnieszka Kraj (Editor), Jerzy Silberring (Editor)
by Robert K. Boyd, Cecilia Basic, Robert A. Bethem
by Ganesh K. Agrawal (Editor), Randeep Rakwal (Editor)
Back to Top