Wiley.com
Print this page Share

Information Integration with Ontologies: Experiences from an Industrial Showcase

Vladimir Alexiev (Editor), Michael Breu (Editor), Jos de Bruijn (Editor), Dieter Fensel (Editor), Ruben Lara (Editor), Holger Lausen (Editor)
ISBN: 978-0-470-01048-8
Hardcover
208 pages
April 2005
List Price: US $176.75
Government Price: US $101.72
Enter Quantity:   Buy
Information Integration with Ontologies: Experiences from an Industrial Showcase (0470010487) cover image

Foreword.

Acknowledgements.

List of Figures.

1 Introduction.

1.1 Finding a Way Out of the Dilemma.

1.2 The Background to this Book.

1.3 The Structure of the Book.

1.3.1 Data modelling and ontologies.

1.3.2 Information integrationwith relational databases and XML.

1.3.3 The show case.

1.3.4 Semantic information integration.

1.3.5 Data source queries.

1.3.6 Generating transformations.

1.3.7 Best Practices and Methodologies.

2 Data Modelling and Ontologies.

2.1 The Information Integration Problem.

2.1.1 How databases view the world.

2.1.2 How ontologies view the world.

2.1.3 Comparison.

2.2 Semantic Information Management.

2.2.1 Principles.

2.2.2 The methodology.

2.3 Conclusions.

3 Information Integration with Relational Databases and XML.

3.1 Introduction.

3.1.1 Areas of data integration.

3.1.2 Business drivers of data integration.

3.1.3 Scope of this chapter.

3.2 Relational Database Integration.

3.2.1 Integration considerations.

3.2.2 Integration approaches/degrees.

3.2.3 Data centralization, sharing and federation.

3.2.4 Integration characteristics.

3.3 XML-based Integration.

3.3.1 XML tools.

3.3.2 XML and objects.

3.3.3 XML and databases.

3.3.4 XML transformations.

3.3.5 XML, eCommerce and Web services.

3.4 Conclusions.

3.4.1 Summary.

3.4.2 Variety in data integration.

4 The Show Case.

4.1 Data Sources.

4.2 Identifying Overlaps between the Data Sources.

4.3 Current Ways of Dealing with Heterogeneity.

5 Semantic Information Integration.

5.1 Approaches in Information Integration.

5.2 Mapping Heterogeneous Data Sources.

5.2.1 The Unicorn Workbench.

5.2.2 Ontology construction and rationalization in the COG project.

5.3 Other Methods and Tools.

5.3.1 The MOMIS approach.

5.3.2 InfoSleuth.

5.3.3 OBSERVER.

5.3.4 Ontology mapping in the KRAFT project.

5.3.5 PROMPT.

5.3.6 Chimæra.

5.3.7 ONION.

5.3.8 Other ontology merging methods.

5.4 Comparison of the Methods.

5.4.1 Comparison criteria.

5.4.2 Comparing the methodologies for semantic schema integration.

5.5 Conclusions and Future Work.

5.5.1 Limitations of the Unicorn Workbench and future work.

6 Data Source Queries.

6.1 Querying Disparate Data Sources Using the Unicorn Workbench.

6.1.1 Queries in the Unicorn Workbench.

6.1.2 Transforming conceptual queries into database queries.

6.1.3 Limitations of the current approach.

6.2 Querying Disparate Data Sources.

6.2.1 The querying architecture in the COG project.

6.2.2 Querying in the COG showcase.

6.2.3 Overcoming the limitations of the Unicorn Workbench.

6.3 Related Work.

6.3.1 Ontology query languages.

6.4 Conclusions.

7 Generating Transformations.

7.1 Information Transformation in the COG Project.

7.1.1 Generating transformations with the Unicorn Workbench.

7.1.2 Automatic generation of transformations in the COG project.

7.2 Other Information Transformation Approaches.

7.2.1 Approaches that perform instance transformation.

7.2.2 Approaches that do not perform instance transformation.

7.3 Conclusions, Limitations and Extensions.

8 Best Practices and Methodologies Employed.

8.1 Best Practices.

8.1.1 Selective mapping.

8.1.2 Domain vs application modelling.

8.1.3 Global-as-view vs local-as-view.

8.2 Lessons Learned.

8.2.1 Quality of global model depends on local models.

8.2.2 Refinement of ontological concepts.

8.2.3 Automation is hard to achieve in real-life situations.

8.2.4 Queries vs transformations.

8.3 Conclusions.

9 Conclusion.

References.

Glossary.

Index.

Back to Top